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Abstract

IT help desk operations are expensive. Costs associated with IT operations present

challenges to profit goals. Help desk managers need a way to plan staffing levels so that

labor costs are minimized while problems are resolved efficiently. An incident prediction

method is needed for planning staffing levels. The potential value of a solution to this prob-

lem is important to an IT service provider since software failures are inevitable and their

timing is difficult to predict. In this research, a cost model for help desk operations is de-

veloped. The cost model relates predicted incidents to labor costs using real help desk data.

Incidents are predicted using software reliability growth models. Cluster analysis is used

to group products with similar help desk incident characteristics. Principal Components

Analysis is used to determine one product per cluster for the prediction of incidents for all

members of the cluster. Incident prediction accuracy is demonstrated using cluster repre-

sentatives, and is done so successfully for all clusters with accuracy comparable to making

predictions for each product in the portfolio. Linear regression is used with cost data for

the resolution of incidents to relate incident predictions to help desk labor costs. Following

a series of four pilot studies, the cost model is validated by successfully demonstrating cost

prediction accuracy for one month prediction intervals over a 22 month period.
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1 Introduction

1.1 Problem Statement

Today’s modern information systems are built on the foundation of complex software

systems. Software engineering plays a fundamental role in the design and maintenance of

software systems. The primary goals of software engineering are to deliver high quality

products that work reliably and have predictable costs in their design and maintenance. The

accurate estimation of costs associated with software development, test, deployment and

maintenance in order to achieve reliability goals is important to most organizations. Qual-

ity must be assessed at all phases of software development, not just in the testing process

and after the product is deployed. Assessing quality throughout all phases leading up to

delivery helps meet reliability goals. Essentially, effort expended during development and

test phases to ensure the quality of a product in its operational environment is an investment

whose return is quantified by the avoidance of maintenance costs. The goal of these in-

vestments is to mitigate risks associated with the quality of the product when it is deployed

and running in its intended operational environment. Since no software product is perfect,

unavoidable effort is necessary to manage anomalies and failures that occur after deploy-

ment. Knowing the magnitude of labor costs for troubleshooting and problem resolution

activity would be of great value to managers. Not knowing how to determine these costs

before an internally developed product is released, or a Commercial Off-the Shelf (COTS)

product is deployed, is a problem in organizations who invest in software and rely on it for

profit. As such, cost management associated with product maintenance should not stop at

1
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deployment time and should be considered when purchasing a product. Processes must be

in place to protect the investment of software costs through an understanding of its total cost

of ownership over its useful life. Underestimating these costs can result in negative effects

on the quality of the software and insufficient resources to fix problems. Additionally, a

company who experiences reliability issues with software products in which capital invest-

ments are made risks reputation issues and potential loss of competitiveness. Conversely,

missed opportunities to fund other business investments can occur by overestimating soft-

ware maintenance costs [19]. In short, organizations must have techniques to help predict

product maintenance costs. This thesis contributes novel ways to help predict maintenance

costs of deployed software products.

In order to assess the role of software engineering in terms of product quality, reliability

and cost, scientific methods must be used on real-world data gathered through focused

observation of deployed systems, or through components designed to gather data through

instrumentation. In some cases, system data may be collected for purposes other than the

empirical evaluation of some aspect of a system. For example, problem reports submitted

to an IT help desk may be managed in a knowledge repository so that common problems

can be mapped to known solutions. The same data can be used to discover relationships

between the attributes of problem reports to discover process improvement opportunities.

On the other hand, information related to some phenomenon of interest may be obtained

from human subjects through a survey designed to produce data for use with a selected

empirical method, for a specific goal. Empirical methods are applicable for either type of

data and are an important aspect of software engineering, without which one cannot account

for real-world phenomena.

The usefulness of empirical methods can be viewed in terms of the scope of their ap-

plicability to various domains. No single technique for cost estimation or process improve-

ment provides an exhaustive methodology for achieving improvement goals. Some tech-

niques address the performance aspect of systems while others target financial gains in their

2
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approach. The wide variety of goals established in process improvement drive an equally

broad scope of potential solutions. In the discovery of a sufficiently robust set of techniques

and the systems for which success is realized through their application, a framework of

methods can be constructed. Design goals in its assembly are met through the delivery of

a framework which is adaptable, scalable, cost effective, and one through which alternative

solutions can be evaluated for their contribution to process improvements in IT operations.

This thesis makes an additional contribution to software engineering by demonstrating the

portability of analytical methods used in the discovery of IT process improvement oppor-

tunities to the analysis of survey data not constrained to IT. This extension expresses the

value of the techniques and their overall generalizability.

Recent advancements in the state of the art of software cost estimation indicate a trend

toward integrating fine grain metrics with more coarse grain metrics such as those found in

legacy software capability maturity models. In the work of Kauland and Sharma [64], the

granularity of an estimation metric is presented in terms of the level at which it uses the

attributes of actual code artifacts. For example, fine grain parameters such as code quality,

code revision frequency and test coverage of existing code are combined to form a cost

index for use in estimations of project costs for similar future efforts. Conversely, coarse

grain estimation parameters are derived from a pyramid model whereby higher labor costs

are attributed to fewer, highly-compensated managers represented at the apex of the pyra-

mid, and much larger numbers of individual contributors are represented at the base of the

pyramid. Increasing levels of compensation, and decreasing numbers of individuals are rep-

resented in the middle layer of the pyramid. With this approach, producing labor estimates

consists of estimating the number of team members and their financial compensation.

More specific to maintenance in the prediction of software costs, Nguyen [80] proposes

an eight step process by which improvements to the COCOMO [15] estimation model is ef-

fected through incorporation of parameters related to the size of the code to be maintained,

as well as the number of added, deleted and modified lines of code. The last three metrics

3
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are aggregated into a single parameter which expresses the amount by which the code is

impacted through the three types of code changes. The proposed technique is applied to a

selected set of estimation models. The estimation models, now adjusted using the aggre-

gate parameter described above, are evaluated against industry datasets in terms of their

maintenance cost prediction performance.

A fault-driven approach to the reduction of effort in projects with partially overlapping

development phases is proposed by Henningson et al. [46]. The authors propose a method

by which faults found in a software project can be used to identify similar faults in projects

with overlapping development schedules. The process is qualitative and has a general busi-

ness focus. The authors do not include empirical evidence of the success of the approach.

The focus of this thesis is on cost estimation and process improvement techniques ap-

plicable to the resolution of software product failures, and, for specific techniques, their

generalizability to the analysis of survey data is presented. The proposed methods use ac-

tual defect data from an IT help desk. In the analysis of survey data, the results of a set of

questions on the subject of software reuse obtained from software practitioners is used. In

summary, a literature review of the state of the art of software cost estimation techniques and

the identification of process improvements indicates opportunities to contribute research in

the area of defect-driven models.

Business processes and profitability are impacted by unplanned interruptions experi-

enced in the end user computing environment. Excess project costs can be attributed to

loss of productivity when business-critical software applications fail. Costs can be directly

attributed to the length of time required to resolve problems. In a company whose prof-

itability relies on the production and sale of goods, overhead processes such as maintaining

the IT infrastructure must serve the production environment with minimal failure. Busi-

ness must focus on core strategic direction while the IT teams keep software and hardware

error-free. Interruptions to productivity such as IT-related failures are therefore disruptive

and costly. The dynamic phenomena of a helpdesk environment in an industrial setting re-
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sult in opportunities to gain practical knowledge from historical information. Specifically,

information from the resolution of problematic software can be investigated for primary

causal relationships between attributes in help desk problem records, known as incidents in

this thesis. Principal Components Analysis (PCA) facilitates the identification of similarly

varying attributes in a dataset. From the relationships discovered, recommendations may be

formulated for operational optimization and as corrective action to avoid future problems.

Process enhancements are targeted for an investigation of desktop software failures in an

industrial setting with over 100,000 employees. The company’s core business is comprised

of the manufacture and sale of large hardware and software systems, and the provision of

systems engineering expertise in technology-based solutions. Over 4000 software applica-

tions facilitate productivity among the employees. Most products are commercial off the

shelf (COTS).

The company has an internal organization whose responsibility is to manage the IT

infrastructure through a centralized help desk. The IT service portfolio provided by the help

desk includes break/fix desktop hardware and software support, and desktop software and

hardware provisioning. Routine assistance such as password resets and general IT-related

questions are managed through the help desk.

The staffing structure at the help desk is comprised of tiers. The first tier deals with

initial contact. Staff at this tier provide solutions mainly through script-based assistance. A

separate product-focused tier is trained in a variety of domain-specific solutions. The initial

tier is shared with a process-focused team. Individuals maintain throughput by escalating

incidents for which scripted solutions do not provide a fix. Incidents are laterally transferred

to product-focused groups when resolution cannot be attained at the initial tier. Incidents

which exceed defined levels of urgency receive the attention of a manager whose role is to

expedite resolution. This process is known as incident escalation.

Metrics are used to establish time-based service targets and to alert management for pri-

oritization. These metrics capture real-time occurrences of service target breaches. A fixed
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number of attributes is associated with each incident record. These include a unique identi-

fier, textual and numeric fields to describe the problem and solution and record information

such as the amount of time required to resolve the incident, the number of lateral transfers

and whether or not the incident required escalation. Attributes exist to record whether or

not the help desk technician finds a match to any one of various historical record types such

as other incidents and known problems. The match criteria is subjective; matches may be

made on the basis of problem similarity, solution similarity or both. Additional fields which

help define service targets contain levels of impact and urgency of the problem.

Incident trends are discovered and investigated through conventional methods such as

identifying the top ten incident-prone software products each month and developing correc-

tive actions based on the most frequently occurring resolution categories from mandatory

fields in each incident record. Of particular interest is aggregate service target breaches over

time, and quantifiable impacts to productivity due to service target breaches. An effective

mechanism for analyzing data behavior among sets of incidents does not exist. Manage-

ment would benefit from knowing incident attribute behavior with respect to preferred res-

olution outcomes. Principal Components Analysis (PCA) is investigated in this case study

to address the analytical gap.

A Information Technology (IT) help desk is a resource designed to provide knowledge

and resources to enable individuals to be productive in the organization to which the IT

services are delivered. The purpose of a help desk is primarily to resolve problems and

provide information about products such as software and computers. In some cases, the

individuals served by an organization’s help desk are employees of the organization, and in

other cases the customers are external. Organizations typically provide IT help desk ser-

vices to their customers through methods such as websites and toll-free telephone numbers.

The adoption of newer technologies for communication with help desks such as mobile

applications and instant messaging is becoming popular. All of these communication meth-

ods are used in a support model known as remote assistance. Some organizations offer
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services for problem resolution on physical devices. This type of service offering is re-

ferred to as desk side support. IT help desks in today’s environment operate under a formal

management framework. Generically, this approach is referred to as IT Service Manage-

ment (ITSM). Implementation of this management framework requires alignment to service

strategy, service design, service operation and the measurement of services to effect process

improvement and attain designated levels of maturity. ITSM is often implemented under

the Information Technology Infrastructure Library (ITIL). The UK Office of Government

Commerce publishes standards in the ITIL library that provide guidance in the implementa-

tion of ITIL-based ITSM [22]. A motivating force behind help desk process formalization

is an increasing focus on integrating an organization’s business processes such as customer

engagement and cost management with its IT support model [26]. Some contractual obli-

gations between business partners specify operation under some form of ITSM while others

specify the adoption of ITIL standards for consummate partnership.

First Research Industry Profiles presents a quarterly update of business trends in a wide

variety of industries. In the May 2014 issue under the categories of call centers and ser-

vice industries, centers around the world account for $150 billion USD in annual revenue.

Additionally, the call center industry is projected to realize more than $300 billion in an-

nual revenue by 2018 through industry expansion. The US telephone call center industry

is comprised of 4,200 companies with a total annual revenue of $16 billion. The growth of

this industry could expand current annual revenue to more than $300 billion by 2018 [117].

The IT help desk services investigated in this thesis are a assembled through ITIL stan-

dards. The goal of the help desk is to minimize the total cost of the IT services while

maximizing business value. The help desk services approximately 100,000 employees in a

large, multinational company whose core products and services are delivered to aerospace

customers. Cost management is executed within the ITIL framework. Budgets for capital

expenditures such as hardware and software, as well as operational expenditures for labor,

are established on a yearly basis and reviewed by management on a monthly basis. Finan-
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cial performance to budgeted expenditures is scrutinized for cost-savings opportunities. The

approaches to labor cost estimation comes with challenges of not knowing what products

will require break/fix assistance, and the number of help desk technicians required to re-

solve software anomalies, hardware failures and other service outages. New processes and

new or upgraded software usually result in an increase in help desk incident volume. These

challenges are typical of help desk operations overall [3]. Current methods for estimating

operational labor costs are limited to an analysis of historical failure trends, knowledge of

planned software product releases by vendors, and projections of growth or down-sizing of

the company’s labor force. The company is committed to implementing standard processes

for efficiency improvements and seeks novel ways to achieve them. In this thesis we inves-

tigate PCA and cost models as innovative techniques to help achieve the company’s goals

of increasing help desk efficiency.

1.2 Goals and Objectives

Goals established for research in this thesis are formalized in the following research

questions:

RQ1 Can PCA be used to assess help desk operations and suggest process improvements?

RQ2 Can SRGM be used to predict future incidents so as to facilitate staffing predictions?

RQ3 Can we develop a cost model for incidents?

The applications of PCA, SRGM and cost models address problem resolution of desk-

top software failures. While the help desk provides a variety of services, we focus on

resolution of anomalies and failures of desktop software. Problems submitted to the help

desk for services such as password resets, requests for new hardware and questions about

how to work with software applications are excluded from this research.

Finally, we are interested to what degree our PCA approach can be generalized to other

domains. We formulate the following additional research question:
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RQ4 Can our approach to PCA be generalized to determine factors that influence success

in reuse projects?

1.3 Rationale for Pilot Studies

Four pilot studies are conducted as part of this thesis. At the conclusion of the pilot

studies, a large scale study is conducted. Pilot studies 1 through 4 established a founda-

tion for several analytical approaches, the development of incident prediction techniques,

and validation of a help desk cost estimation model. In Pilot study 1, PCA was success-

fully applied to incident attribute values from help desk incidents produced by a small set

of products selected from a much larger portfolio of products, to determine the statistical

relationships between attributes. Attribute pairs with stronger covariance were selected to

reduce the overall number of attributes to be considered for developing recommendations

for operational improvements at the help desk. Pilot study 1 was scoped to an IT help desk

environment. Pilot study 2 extended the approach used in the first pilot, to survey data

related to the reuse of artifacts in embedded and non-embedded software systems. The suc-

cess with which PCA was used in Pilot study 2 demonstrated the technique used to analyze

help desk incidents can also be used to relate survey question responses. Pilot study 2 is

conducted in an industrial setting that is quite different from the help desk environment

in the first pilot. Pilot study 3 develops a product reliability estimation technique using

SRGMs to predict incidents. This pilot study is conducted in the same industrial setting

as with the pilot study 1. Although the approach is successful based on incident predic-

tion accuracy, the study is limited to a much smaller number of products than what is used

in the industrial setting. Pilot study 4 addresses this gap by applying incident estimation

techniques to a larger portfolio of 156 products vs. the 18 products used in pilots 1 and 3.
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1.4 Organization

This thesis is organized as follows: Chapter 2 introduces the selected background re-

search methodology, includes a discussion of how empirical software engineering methods

have evolved, and concludes with a documentation of existing work related to our research

goals and in the context of PCA, SRGMs and cost models. The approach to applying our

techniques is described in Chapter 3, including results. The material in Chapter 3 is pre-

sented as four pilot studies. Chapter 4 brings together the concepts and techniques covered

in the four pilot studies described in Chapter 3 through presentation of a large scale ap-

proach. Chapter 5 concludes with a discussion of future work inspired by the research in

this thesis.
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2 Background

2.1 Background Research Methodology

A systematic and auditable methodology is selected in our review of related work in

this thesis [68]. Specifically, our goals are

• To learn the range of empirical methods used in the study of IT process improvements

• To determine any gaps in current research related to IT process improvements

• To establish a background in order to appropriately position the methods proposed

herein, with respect to existing, related work in IT process improvements and their

generalizability to other domains.

This literature review seeks relevant work in fulfillment of the objectives stated above. The

review protocol consists of searches within IEEE Xplore, ACM Digital Library, and specific

journals and conference proceedings. Concepts from published work already integrated into

the development of methods and their preliminary results discussed within this thesis are

included in this background section, as are related works cited within these publications.

The protocol is based mainly on key word searches and author searches. Search results are

reviewed at the title and abstract level, and accepted as candidates for consideration if the

theme or subject embodies a topic in this thesis and fulfills the background research goals.

The initial set of papers is read thoroughly and accepted or rejected based again on thesis

topic applicability and potential for meeting the background research goals.
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2.2 Evolution of Empirical Software Engineering Methods

Studies conducted on the application of empirical software engineering methods indi-

cate three types of change over the past three decades: 1) The quantity of published pa-

pers using empirical software engineering methods has increased; 2) The quality of data in

published work has improved; 3) The scope of software system types on which empirical

methods have been applied has broadened. Zannier et al. [138] conducted a quantitative

study of the success of empirical methods in software engineering over the period of 1975

to 2005. Statistically significant results from a study of randomly selected samples of pa-

pers accepted through the International Conference on Software Engineering (ICSE) over a

three decade period demonstrate the quantity of papers increased over the period of study.

These results confirm growth in interest in empirical software engineering methods. The

authors also included a statistical analysis of the quality of papers from the same popu-

lation sample, based on a clearly articulated definition of research quality used in several

previous surveys of empirical software engineering research. In this component of their

investigation, statistical evidence did not support a hypothesis of growth in the quality of

empirical software engineering research. In 2013, however, Bosu and MacDonell studied

the quality of data in empirical software engineering research and observed improvements

in data quality [17]. The scope of software system types investigated using empirical meth-

ods was noted to have increased [138], but modern technologies such as cloud computing

and embedded systems are deserving of deeper empirical research [125]. Much like the

vision presented by Sjoberg, Dyba and Jorgensen in 2007, in the many sub-disciplines of

software engineering, empirical research methods should facilitate the development of sci-

entific knowledge about the applicability of various SE technologies to different individuals

engaged in different activities and systems. As increasingly sophisticated methods are de-

veloped, they should be applied in novel ways to advance our understanding of software

processes [100]. The research goals in this thesis aim to benefit the software engineering
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and IT help desk communities through the use of such methods in the interest of increasing

the quality of software processes.

2.2.1 Information Technology Process Improvements

An investigation into published work related to process improvements in information

technology (IT) is essential in establishing a research direction for this thesis. We begin

with an investigation of work that is related to IT process improvement in general. Pub-

lished work related to process improvements is investigated in other areas with a strategy to

identify techniques and approaches that may be useful in IT Help Desk operations. We then

concentrate on content that applies directly to IT disciplines and centralizes application of

Principal Components Analysis (PCA) and Software Reliability Growth Models (SRGMs),

to data obtained from sources in various IT domains.

An alignment of IT services to a business model is the focus of a study by Bose, et al.

[16]. Continuous process improvement based on a set of consistent metrics and an analytical

engine for processing anomalous events and process shifts are the key components of a

model-based framework for continuous process improvement in the delivery of IT services.

The framework is implemented in an industrial setting. While our case study is also in an

industrial setting, our approach differs from that of Bose, et al. in the phase in which our

techniques are applied. We derive a cost model from help desk data and predict labor. In

contrast, Bose, et al. effect process improvement in real-time events.

Three types of outbound call scheduling algorithms are introduced by Gulati and Mal-

com [43] in the interest of increasing unpaid balance collection productivity in large call

centers. A simulation-based methodology in which the model mimics the outbound call

process by accessing lists returned by each of the scheduling algorithms provides a way to

assess the system performance against established goals. Three call scheduling algorithms

are introduced. The main difference between each algorithm is the manner in which call

lists are managed throughout the day. In the first algorithm, outbound calls are sequenced
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according to the amount of the customer’s outstanding balance due. Customers with higher

outstanding balances are called first. If an attempt to contact a customer is unsuccessful, the

outcome is noted and the call is scheduled for retry after all scheduled calls are attempted.

In the second algorithm, calls are sequenced according balance due, but a re-sequence is

performed at the beginning of each day. The third algorithm differed from the second in

that the rescheduling occurs hourly. The second and third algorithms outperformed the first

one in terms of successfully contacting the right person to discuss collection arrangements.

2.3 Analytical Methods for IT Process Improvements

Three analytical methods are included in this thesis proposal. In the sections below each

method is discussed in terms of related work and its role in software engineering. Where

applicable, related work specific to IT help desk operations is included with a focus on

achieving improvements through use of these methods.

1. Principal Components Analysis (PCA)

2. Software Reliability Growth Models (SRGM)

3. Cost Models

2.3.1 Principal Components Analysis

Principal Components Analysis (PCA) was invented by Karl Pearson in 1901 [87]. It

can be used to reduce the number of variables in a data set based on how much each variable

contributes to the overall variance in the data. It has been used heavily in a variety of appli-

cations over the past four decades. In each of these examples, goals for variable reduction

in systems with a range of complexity are met. Early examples include the reduction of

search space in text-base searching [70], variable reduction in multi-variate datasets [33],

data compression in image processing [12] and speech analysis [40]. PCA gained interest
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in the artificial intelligence community in the 1990’s. Examples include the integration of

artificial neural networks for variable reduction [52], applications to neural networks for

process fault diagnosis [101] and the application of PCA to multi-layer perceptron learning

algorithms to improve convergence speed with the back propagation algorithm [106].

2.3.1.1 Software Project Characteristics

PCA has been adopted as a popular method in software engineering to achieve reduc-

tion in large variable sets and to group variables into similarly-behaving subsets [83,84,111,

112]. The predictors of software development project success factors based on project sim-

ilarities in [127] use PCA to group projects with similarly varying characteristics. Project

attributes and success indicators are evaluated in a database of projects where PCA is suc-

cessfully used in the identification of key characteristics to determine project outcome.

The outcome of projects with shared characteristics is investigated through the prioriti-

zation of success factors as presented by Wohlin and Andrews [21]. In their work, PCA is

used primarily to reduce a potentially large set of variables to a smaller set whose behavior

is consistent with an overall set of success variables determined for a database of software

projects. In keeping with an objective to find project characteristics that influence success,

PCA is used to determine factors which vary together. By grouping co-varying characteris-

tics with overall success variables, the objective is met. We build on this success by using

a similar approach with PCA. In this case study the variables of our PCA are incident at-

tributes. We group similarly behaving subsets of incident attributes for a product group as

a means of identifying the product which has the greatest similarity to the other products in

the group. We designate this product as the representative of the group and use it to address

incident prediction using product clusters rather than the full product portfolio. Through

this approach, the overall level of effort associated with this approach is reduced.

A method for selecting a software architecture based on attributes of product quality

is presented as an empirical study by Svahnberg and Wohlin [108]. The method quantifies
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the perceived level of support provided by different software architectures such as layered

and Model-View-Controller, on the basis of quality attributes such as functionality and reli-

ability. A set of questions was asked of a selected group of participants to understand their

perception of support level by software architecture type. Among several techniques used

to analyze the survey responses, PCA was used to group how participants answered the

survey questions. The authors note how PCA is sensitive to small numerical differences in

data, and confirmed such sensitivity in their results. Although PCA successfully produced

groupings of responders in terms of their perceived levels of architectural support, the au-

thors concluded with a recommendation to use the squared distance to the mean value for

each data point, as opposed to PCA, to identify groups of responders. This research con-

tributes a method for making a managerial decision among a set of architecture candidates

for best fit to a project. Additionally, it illustrates the sensitivity of PCA in data with small

differences. Svahnberg and Wohlin contribute a method of making a managerial decision

among a set of architecture candidates for best fit to a software project. This establishes

validity in the selection of PCA in our case study in the designation of a product which best

fits the behavior among the set of products in a cluster. Our case study differs in the object

of selection. Svahnberg and Wohlin select a software project where we select a software

product.

2.3.1.2 Code Decay Analysis

Wohlin et al. [83] use PCA in an investigation of software code decay across four suc-

cessive releases of a large (800,000 LOC) industrial software product consisting of 130

components. Using a red/yellow/green coding scale, software components were assigned

one of three classifications in terms of their fault proneness. The characteristics of each

of the three categories of fault-proneness were of interest in this research. Twenty eight

attributes of the software components were investigated. Examples of attributes are lines of

code and average number of fixes. The authors were interested in knowing which of the 28
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attributes in the database of software components and their attribute values varied the most.

PCA was used to determine the rank order of attributes in terms of variance, such that a

selected threshold of total variance allowed the authors to select only the attributes above

the threshold to be considered in their subsequent analysis. By grouping the attributes ac-

cording to similarities in their variance, conclusions could be drawn regarding the causes

for which certain components are healthy and which are problematic [83].

2.3.1.3 Information Technology

In many applications of PCA, a reduction of the number variables is a preprocessing

step to facilitate computational tractability. This is the case with Liu and Liu [73] in the

development of a back propagation neural network designed to forecast call center traffic.

PCA is used to identify m consecutive half-hour periods over which call volume varies in n

groups. A reduction from 48 time periods to nine time periods was realized through PCA.

These become inputs to a back propagation neural network used to forecast call volume.

The authors’ technique is evaluated against an existing call volume forecasting tool and

was found to outperform it.

Another example of PCA applied specifically to the IT domain is found in the work by

Tannahill, et al. [116]. The authors introduce PCA as a statistical tool in the reduction of

variables in big data analysis. Their work is among the first to associate PCA with data an-

alytics through recognition of the growing volume of data available in modern information

systems. Their application of PCA to Big Data analytics permits large-scale reduction in

variables through elimination of a large number of variables which contribute little to the

variance of the data. Although our research is not considered big data analysis, the work of

Tannahill, et al. is important to potential scalability of our solution. As mentioned in our

introduction, we focus on one of three categories of incidents related to a software prod-

ucts. Should the cost model proposed in this case study be extended to incidents in all three

categories, the scale of the problem could easily approach that of big data.
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PCA with a focus on desktop computer security is addressed in research conducted by

Kim et al [67]. Security anomalies such as attempts to access information by unautho-

rized agents are detected using a Back-propagation Neural Network (BNN). Similar to an

approach taken by Liu and Liu [73], PCA is combined with a BNN to enhance computer

intrusion detection efficiency. Working with an intrusion detection database consisting of

41 variables, the authors use Genetic Algorithms (GA) to obtain the optimal set of features

for PCA as well as the best parameters values for topology of the BNN. Unlike Liu and Liu,

however, their use of PCA is not limited to a simple reduction in variables.

PCA lends itself to Statistical Process Control (SPC) due to the large number of vari-

ables involved in many industrial processes. For example, temperature, fuel flow rate, fuel

pressure, and a number of other environmental factors must be controlled during prepa-

rations for a commercial airplane to land safely. Timely judgments must be made based

on the interaction of these variables. A primary goal in SPC is to detect conditions which

approach established and sometimes adaptive limits. Zhou and Gou [142] work within a

system consisting of many processes and build a process monitoring model which reduces

a multi-dimensional system of variables to a low-dimensional set. The reduced variable set

is obtained using PCA.

2.3.2 Software Reliability Growth Models

We turn our attention to Software Reliability Growth Models (SRGMs) as the second of

three analytical methods used in this research. Reliability models have been used success-

fully to predict problems with software applications. The dynamic selection of Software

Reliability Growth Models (SRGMs) has been demonstrated by assessing model perfor-

mance in the selection of a preferred model [105] [7]. SRGMs include a parameter that

estimates the total number of defects in a software product. Knowing the value of this pa-

rameter and the number of defects already reported allows us to estimate the number of

remaining defects for a software application. Knowledge of the number of residual defects
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assists in quantifying information related to product quality. From the research conducted

by Stringfellow, Andrews and Andersson [7, 105], we have confidence that SRGMs can

predict the number of residual defects and assist in quantifying information related to prod-

uct quality during software testing. This establishes a pivotal element of this research and

exposes a fundamental difference between SRGMs applied to software testing vs. prod-

ucts in their operational life cycle. We formalize this by investigating if desktop software

product reliability data obtained from help desk incidents be used to predict future incident

volume? We answer this question by demonstrating accurate predictions as part of our cost

model.Similar to products delivered through software development, the quality and relia-

bility of desktop software applications can be assessed through the number of problems

reported as incidents to an IT help desk.

The typical life cycle of a software product under development includes requirements,

interface specifications, design reviews and code inspections. Software development orga-

nizations usually have a team whose mission is to evaluate the quality of a product, usually

with respect to its requirements. The development team produces code and executes unit

tests. When unit testing is judged to be successful, the quality team executes system inte-

gration testing. Defects detected during the unit and system testing are recorded in a defect

database. A history of product defects can then be derived for application to reliability

models.

In this thesis we investigate incidents submitted to an IT help desk for products already

deployed to computers in an industrial environment. Unlike the defect reporting process

used with internally-developed software, our approach focuses on products actively used in

their intended operational context. Our goal in this case study is to apply the SRGMs to a

model selection process. We select a model based on its prediction performance to estimate

the total number of incidents in software applications. Knowing how many incidents to ex-

pect assists in quantifying information about product quality, loss of employee productivity,

and projected levels of help desk staffing to prepare for problem resolution.
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2.3.2.1 Software Reliability Model Types

A software reliability model is a mathematical representation of a random process from

which software quality, or some quantity that represents software quality, is expressed as a

function of time [53]. Two types of models have been used to assess the quality of software

in terms of its reliability: static and dynamic models. Both models types have been used to

estimate the number of faults (defects) in software artifacts. Static models are based on soft-

ware metrics to measure product quality. Examples of software metrics are lines of code,

number of function calls and complexity metrics. Dynamic models make use of historical

failure data such as defect data collected during a test phase or over a specified time period

of a deployed product running in its normal operational profile. Dynamic models applied to

software in its test phase can be used to make release decisions. The same type of models

applied to a post-release phase can be used to estimate the number of remaining defects for

purposes of planning support staff or projecting operational maintenance costs [62]. Dy-

namic models are usually time-based. For example, the time between failures is commonly

used in the dynamic reliability models discussed by Musa et al. [79]. The time component

of dynamic models is usually based on a set of times ti for i > 1, at some fixed interval

such as each day or each week. Organizational practices will usually dictate the reporting

interval based, for example, on the interval of meetings at which defects are discussed or

the time interval over which defects are collected through a defect management system.

2.3.2.2 Reliability Model Assumptions

SRGMs are dynamic models that make use of historical failure data such as defect data

collected during a test phase or over a specified time period of a deployed product running

in its normal operational profile. Dynamic models applied to software in its test phase can

be used to make release decisions. The same type of models applied to a post-release phase

can be used to estimate the number of remaining defects for purposes of planning support
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staff or projecting operational maintenance costs. Our case study goes beyond the approach

taken by Kan [62] by developing reliability models from defects generated by products

in their operational life cycle. Kan predicts post-release operational defects using defect

data from product testing. Dynamic models are usually time-based. For example, the time

between failures is commonly used in the dynamic reliability models discussed by Musa

et al. [79]. The time component of dynamic models is usually based on a set of times ti

for i > 1, at some fixed interval such as each day or each week. Organizational practices

will usually dictate the reporting interval based, for example, on the interval of meetings at

which defects are discussed or the time interval over which defects are collected through

a defect management system. Our case study follows the Musa model in this regard by

establishing time intervals over which incident data are collected and calculating cumulative

incidents at one week intervals. Date and time stamps on incident records facilitated data

collection in this regard.

Time can be measured as execution time or calendar time. An assumption made with

dynamic software reliability models is that the product for which reliability is being esti-

mated operates in its operational profile. This means that in pre-release testing, the test

cases are designed according to the probability of their occurrence during the intended op-

erational profile. Similarly, models used for the assessment of quality during post-release

evaluation assume the software is operating under its intended profile. In each of these

cases, a number of factors influence the quantity and type of failures that can occur such as

the execution environment [37]. Reliability model assumptions are addressed in our case

study by investigating 1) if help desk incidents can be used to build reliability models, 2) if

calendar time can be used in the reliability models. Since the models we use are constructed

from incidents from products in their operational life cycle, we meet the assumption of soft-

ware operating under its intended profile.
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2.3.2.3 Evolution of Software Reliability Models

Over three decades of research beginning with formative works by Iannino, Musa,

Okumoto and Littlewood [53] in 1983 have resulted in a body of knowledge of software

reliability growth models [133] [135] [134] [79] [137] [78] [119] [34] [136] [129] [130].

These works concentrated on foundational topics such as the application of SRGMs to soft-

ware reliability theory [79] and selection criteria for reliability models [53]. Later works

concentrate on specific attributes of SRGMs. Gokhale and Trivedi propose a log-logistic

model applicable to increasing or decreasing failure rates to address the assumptions of

constant, monotonic increasing or monotonic decreasing failure occurrence rates in finite-

failure, non-homogeneous Poisson process (NHPP) models [39]. A summary of research

in SRGMS through the late 1990’s is presented in the works of Everett et al. [35], where

real-world implementation of software reliability management is discussed in the context

of software reliability management practices, tools designed for reliability management and

the applicability of reliability models to safety-critical systems [35]. Similar to the approach

taken by Gokhale and Trivedi [39], assertions that failure rates that fit a lognormal distribu-

tion [77] motivate the development of a model based on lognormal execution time [77] with

supportive empirical evidence of its success with two sets of failure data. Pant and Jeske

explore software reliability predictions applicable to distributed software [86]. Assump-

tions of independence among successive software failures by SRGMS studied through the

late 1990s are addressed by Goseva-Popstojanova and Trivedi through the introduction of a

software reliability modeling framework based on Markov renewal processes [41]. In early

2000 an adjustment to the Yamada S-shaped model [133] was proposed through the inte-

gration of a testing effort function to produce the Delayed S-shape model [48]. Conclusive

empirical evidence of performance improvements to the existing Goel-Okumoto model is

demonstrated by Keiller and Mazzuchi in 2000 by introducing a technique based on failure

windows [66]. Further refinement of existing SRGMS is proposed in the work of Kuo, et
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al. where consideration for both testing effort and fault detection rates produces a novel

framework for the construction of SRGMs [69]. Further improvements in SRGMs are pro-

posed by Donovan and Murphy in 2001 [32]. An approach to the estimation of software

reliability through grouping of failure data into clusters of homogeneous failure intensi-

ties is adopted by Tian in 2002 [118]. Huang et al [50] and Peng et all [88] account for

real-world violation of assumptions of immediate correction of defects and mutual inde-

pendence between defects by proposing new SRGMs and their success in defect prediction

capability. These same two assumptions and the realistic likelihood of their violation is also

addressed by Jalote and Murphy in 2004 through the introduction of a new SRGM [59]. In

related work, Shu et al propose a new SRGM which accounts for the lag between defect

correction and detection, thereby addressing the reality of assumption violations associated

with immediate defect repair [95, 96]. Differences in failure removal phenomena between

software under test and software operating in a production environment motivate Huang,

et al to propose a new SRGM which accounts for these differences [51]. The differences

between Software test environments and production environments is also investigated by

Jeske et al through the use of test data. A calibration technique for adjusting the failure

rate estimate obtained from analyzing test data offers a practical way to extend SRGMs

to account for operational differences in the execution of post-release software. Opera-

tional difference between software test and production environments are also investigated

by Zhao et al [140] and Li et al [72]. The observed differences motivate the authors to

assess the differences in fault prediction capabilities between two SRGMs and recommend

a preferred model for use with failure data obtained from a production environment. The

impacts of open source software projects on defect prediction capability of SRGMs is the

focus of research by Tamura and Yamada [113, 114], Ullah and Morisio [120], Singh and

Maurya [98], and Syed-Mohamad and McBride [109, 110]. The Analytical Hierarchy Pro-

cess (AHP) is proposed as a software reliability assessment method for the development of

software for distributed system. Reliability-driven software release decisions are assisted
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by SRGMS in the approach proposed by Bhawnani et al in 2005 [14] and Stringfellow et

al. [105]. As with most applications of SRGMs in the literature, their approach focuses on

software testing unlike the perspective of help desk incidents in our case study. Huang et

all [49] address challenges of non-constant test effort in exponential and s-shaped SRGMs

from which the reliability, residual number of defects, failure rate, and optimal release time

are determined. A logistic testing-effort function is incorporated into both s-shaped and

exponential models in a demonstration of their effectiveness in defect estimation. [24, 25].

A sharp increase in the production of consumer electronics and concern for sound methods

for estimating embedded software reliability motivate Almering et al to conduct an empir-

ical investigation into the applicability of SRGMs to this growing class of devices. The

authors confirmed the models studied can assist managers in decisions related to the market

readiness of consumer devices [5].

SRGM estimation parameters are derived using a genetic algorithm (GA) in research

conducted by Aljahdali El-Telbany [4]. Application of the models with GA-driven param-

eters were compared to those with model parameters derived through non-linear regression

methods. The GA-driven models outperformed the non-linear regression models in terms

of defect prediction performance. In another extension of advanced techniques to SRGMs

in the interest of improving fault prediction performance, Li et al. [71] combine SRGMs in

a selective neural network model. The average performance accuracy in terms of fault pre-

diction is improved compared to the individual models from which the network of SRGMs

is comprised. Hsu and Huang investigate combinations of SRGMs using weighted models

to build the combination [47].

Change points, defined as the times or time intervals at which defect occurrences in

the test process change notably, are modeled in the proposal of an SRGM framework to

address model assumptions which are violated in the presence of change points. Owing

to the effects of change points on the accuracy of reliability model fault prediction, Inoue

and Yamada demonstrate a two dimensional model, with testing time and testing effort as
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the two dimensions, on actual software defect data [55, 141]. Rana et al. [91] provide an

insightful comparison between the two common SRGM parameter estimation techniques -

Maximum Likelihood Estimator (MLE) and Method of Least Squares (MLS). The authors

investigate both techniques in the context of estimation of model parameters and remaining

defect prediction accuracy using relative error as a metric. Their evaluation of both tech-

niques on data from literature suggests MLS is a good estimator for curve-fitting data to

observed failure data while MLE outperforms MLS as an estimator for reliable predictions.

Finally, the applicability of SRGMs to mobile applications is investigated. Meskini et al

apply several commonly used SRGM to smart phone applications and report their failure to

curve-fit defect data for all models. The authors attribute the failures to differences between

desktop and smart phone applications [76].

2.3.2.4 Reliability Models and IT

Research conducted by Condon and Cukier [24] related to the applicability of SRGMs

to security incidents is perhaps the most closely related work to the topic of this thesis, re-

spective of the limited scope of incident types in the security domain. Their work considers

security events as incidents, whereas in this thesis an incident is an informational record

reported to an IT help desk. This difference distinguishes our case study from research

conducted by Condon and Cukier.

2.3.3 Cost Models

The identification of principal, influential factors coupled with cost modeling tech-

niques has obvious benefits for software engineering processes. In this paper we apply

similar variable reduction techniques to IT help desk processes through the investigation of

historical resolution data. We discover relationships between data attributes in the interest

of proposing cost-saving corrective action to mitigate undesirable resolution outcomes. Ad-
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ditionally, we observe desirable incident resolution behavior as confirmation of successful

help desk operations.

Dinh and Leonard articulate the motivation for establishing a strong foundation for

designing and maintaining service systems. The service sector dominates many global

economies and demands the creation of value. Using a call center as an example of a Service

Value Creation Network, the three main economic entities are defined: 1) the service client,

such as a retail business, 2) the service provider such as a help desk or call center, and 3) the

service target which is the customer. A conceptual framework is developed under the key

concepts of the role of people and shared information technology. The authors contribute to

service science by formalizing key components in creating economic value from a service

provider. [28].

Minimizing software failures in an operational environment is important to control cost

impacts and to maintain organizational productivity. User-facing behavior such as unsched-

uled downtime, slow performance and anomalous behavior in software systems affects the

perception of a product in terms of potential maintenance costs to an organization and im-

pacts to employee productivity. Critical business applications and systems with human life

at stake demand reliability and continuous availability of services. Software down time

causes revenue loss [103]. While no marketable product is entirely defect-free, software

quality can benefit from reliability models which assist with the estimation of remaining

defects in future phases of the product life cycle. Similar benefits can be realized through

the prediction of problems associated with desktop software applications installed on com-

puters in an IT environment. Where a large number of desktop products is in use in an

organization, an IT help desk can expect a significant workload of problem tickets asso-

ciated with software failures and anomalous operational behavior. The effort required to

resolve these problems has costs associated with help desk technician labor and impacts to

employee productivity. Trends in problems and failures with certain software applications

drive costs to maintain the products. When employees experience failures with applications
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on their computers, they expend unplanned effort during their engagement with the help

desk to report problems. Employees often work real-time with a technician as the problem

is investigated and resolved. For complex problems, additional costs are incurred through

the escalation of issues to help desk subject matter experts. These scenarios usually require

help desk management intervention to ensure the incident is routed to the appropriate team

for investigation. In some cases employees must find work-arounds to remain productive

while problems are being investigated, or even tolerate complete loss of productivity if no

alternate ways to remain productive exist. The latter is commonly associated with failures

experienced while using expensive, domain-specific applications for which alternate prod-

ucts are unlikely to exist. In the worst scenario contractual deadlines for deliverables can

be missed due to application failures, resulting in financial penalties which impact revenue

and the perception of operational quality of an organization.

Knowledge of future help desk incident volume can be useful to plan for resources who

can assist with the resolution of problems. Methods to predict help desk workloads can

assist managers with staffing strategies such as short-term adjustments to the number of

help desk technicians to mitigate incident backlog, documentation of quick-access solution

models for efficient problem resolution, and pre-notification to subject matter experts for

solution planning. In organizations with a self-service problem resolution model, known

problems can be documented with easily accessible resolution instructions available to em-

ployees without direct interaction with the help desk.

2.3.3.1 Cost of Software Testing

Software processes with an economic focus are of interest in the management of devel-

opment and test activity. Cost benefits in a test environment are investigated in [29] where

test case prioritization techniques for regression testing are empirically evaluated. A focus

on cost benefit trade-off is investigated in the modeling of component costs in regression

testing in [30, 31]. The accuracy of a model for predicting selective regression testing cost-
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effectiveness in [45] is evaluated empirically. The economics of regression testing specific

to cost-benefit trade-offs in regression testing are empirically evaluated in [74]. The authors

demonstrate techniques that may be of concern to managers in industrial project cost esti-

mation. Do, Rothermel and Malishevsky focus on economic aspects of pre-release phases

of software development. While this research shares similar goals related to software costs,

our focus is on products in their operational phase. This is an important distinction in that

our cost model applies to products whose operational lifespan is usually unknown at the

time of release. Should the lifespan of a product go beyond an incident prediction period,

our model can be reapplied using more recent incident data for further cost projections.

2.3.3.2 Help Desk Process Improvements

Help desk process improvements are the focus of research conducted by Shu and Guang

[97] where quality improvement is modeled using data mining techniques. Increases in

processing throughput are demonstrated using real-time service metrics such as average

speed of answer. The authors address the problem of help desk efficiency in terms of ser-

vice quality and measure efficiency using real-time metrics. Our research addresses ef-

ficiency improvements differently, through non real-time techniques. Our approach does

not rely on synchronous events, and in fact uses historical events to our advantage. Novel

approximations methods for call arrival processes in service centers are proposed by Steck-

ley [102] and confirmed through a computational evaluation using call center data. Simi-

larly, Ibrahim [54] exposes the challenges of building realistic statistical tools for analyzing

call arrival processes. In this case study our strategy for help desk process improvements

models costs, unlike the approach based on call center arrival used by [54]. Further research

in call center operations is presented through the introduction of a novel call type classifica-

tion technology by Tang [115]. By using actual transcribed conversations from an IT help

desk at the University of Colorado in Boulder, CO, Tang applies four text-based call-type

classification algorithms to determine the error compared to manually classifying the calls
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using the call-type taxonomy. An algorithm based on Support Vector Machine (SVM) out-

performs other approaches. Tang demonstrates help desk improvements through real-time

processes, where our case study 1) relies on historical data, and 2) delivers a managerial

solution rather than solving an operational problem. Help desk automation through the de-

velopment of problem resolution expertise is discussed in [75] in the context of high staff

turnover and resulting loss of experience at call centers. Case-Based Reasoning (CBR) is

proposed as a departure from rule-based methodologies. The application of CBR to histor-

ical help desk data is shown to evolve knowledge in problem resolution. An approach to

identifying solutions by matching symptoms to an archival database of problems and their

solutions is proposed as a method for the automatic diagnosis of software problems reported

by users. While McCarthy clearly focuses on help desk process improvements, specifically

with levels of experience, our research addresses efficiency in the managerial aspect of help

desk management rather than in live help desk operational scenarios.

2.3.3.3 Help Desk Cost Models

Several cost models specific to call centers and help desks exist in the literature. Hamp-

shire and Massey first propose a stochastic model based on queuing theory to address call

center call arrival and servicing, and then extend the model with an economic compo-

nent to develop an approximation algorithm for a profitable, optimally scheduled staff [44].

Fanaeepour et al. survey existing call center structures and propose a service model based

on Generalized Stochastic Petri Net (GSPN). The model is evaluated with a goal to mini-

mize the workload of servers to accommodate a self-service element [36].

2.3.3.4 Cluster Analysis

Cluster analysis is a generic name associated with a set of methods which classify mul-

tivariate data on a selected basis for categorization. The resulting clusters of data can assist
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in identifying a set of characteristics of the patterns of the clusters that are present. The

overall goal in clustering is to divide components into groups so that 1) members in a group

are as similar to each other as possible (intra-group dissimilarity), and 2) the groups are

as dissimilar as possible (intergroup similarity). In terms of statistical variance, intragroup

variance should be small, and intergroup variance should be large [58]. Two main cluster-

ing techniques, hierarchical and non-hierarchical, are found in the literature. A commonly

used hierarchical approach referred to as the Minimum Spanning Tree Method (MSTM),

starts with n clusters for a dataset with n elements, and merges data points to achieve a

targeted number of clusters. MSTM is used widely in practice. Some examples can be

found in the works of Sun, et al [107] and Wu, et al [131] with web images. The iterative

approach characteristic of MSTM is also used in the work of [123], where specific concepts

addressed by MSTM are formalized. As with the MSTM method described by Jain [58], a

distance metric is selected in the approach by Sun, et al [107]. Specifically, Sun formalizes

definitions for well separated clusters, connected clusters and relaxed well separated clus-

ters. Additional work with a cluster analysis using a hierarchical approach is found in the

work by Grygorash, Zhou and Jorgensen [42]. The authors demonstrate the performance of

two different variants of the minimum spanning tree method described by Jain [58] through

color separation in image processing.

2.3.3.5 How Cluster Analysis has been Used in Existing Work

A survey of the fundamental concepts and techniques associated with cluster analysis

by Jain, et al [56] discusses the motivation for cluster analysis and the large scope of disci-

plines in which data practitioners use it. Specifically, cluster analysis techniques have been

used to characterize workloads in performance analysis [58] [90], in information technology

with hypertext-based solutions [18] [139], and, more recently, in big data analysis in cloud

computing environments [132]. Specific to software engineering, Singh et al [99] investi-

gate software component coupling, the level of dependence between software components,
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by seeking the distribution pattern between 145 variables in a software artifact in terms of

six attributes. Additional examples of the use of cluster analysis in software engineering

include an investigation into design improvements with component interfaces [2], and the

evaluation of software engineering methodologies [23]. Data mining techniques include

cluster analysis, as observed in the works of Busse [20] and De L Torre [27]. Through a

cluster analysis of operational execution profiles, Podgurski et al propose a novel approach

to the estimation of software reliability [89]. Numerous examples of cluster analysis can be

found in telecommunications [6] [94] [13] [60].

For research related to large numbers of desktop software products with widely varying

distributions in a company, and large variations in their associated help desk incidents,

cluster analysis is helpful in classifying products with similar distributions and incident

volume [58]. Having identified clusters, small samples from each cluster can be used to

represent the population of the clusters to study, for example, the principal components

responsible for co-variations between attributes of help desk incidents. We use the MSTM

method in this case study to establish a hierarchy of clusters from which a set of eleven is

selected. One product from each cluster is used to represent all products in the cluster.
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3 Pilot Studies

3.1 Pilot 1: Application of Principal Components Analysis

3.1.1 Summary

In this first pilot study we investigate process improvements for help desk operations.

Most help desk managers keep records on incidents and how they are resolved. Rarely

are these analyzed with respect to recommendations for improvements. At the same time,

improvements have the potential to decrease costs of help desk operations and increase

effectiveness. Incident reports from two desktop software products (one incident prone, the

other not incident prone) used at a major, multinational corporation are analyzed in this pilot

study. Several recommendations for improvements of help desk operations were identified.

3.1.2 Purpose

The purpose of this pilot study is to investigate a technique for analyzing help desk in-

cident data behavior to identify operational process improvements. Managers at help desks

would benefit from knowing incident attribute behavior with respect to preferred resolution

outcomes. For example, if an incident submitted to a help desk is identified as impacting

the productivity of a large number of employees in an organization, help desk managers

would be motivated to facilitate a quick resolution of the incident through prioritization of

resources. Overall, managers prefer incidents with wide impact to be resolved quickly. An

analysis of high impact problems submitted to the help desk should indicate a trend toward
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prioritization of incidents. Verifying this trend confirms help desk operations meet the busi-

ness objective of incident prioritization for high-impact problems. However, if high-impact

incidents tend not to be prioritized, the analysis is successful in discovering an opportunity

for improvement. In practice this type of analysis is seldom conducted. Principal Compo-

nents Analysis (PCA) is investigated in this pilot study to address the analytical gap. We

attempt to analyze data from an industrial IT help desk to answer the following questions

related to this pilot study:

RQ1- 1: Can an incident report database for desktop software products be used to discover

primary relationships between incident report attributes?

RQ1- 2: Can process improvements be formulated from attribute relationships discovered

in the principal components of an incident report database?

RQ1- 3: Can preferred attribute relationships which are not observed in the data be useful

toward identifying unnecessary resolution processes?

3.1.3 Scope

This pilot study is scoped to an analysis of desktop software failures in an industrial

setting with over 100,000 employees. The core business of the organization is comprised

of the manufacture and sale of large hardware and software systems, and the provision

of systems engineering expertise in technology-based solutions. Thousands of software

applications facilitate productivity among the employees. Most products are commercial

off the shelf (COTS). In this study, two such products are investigated. One is incident-

prone and the other is not. Using this approach we establish the foundation of one aspect of

this research so that it may be extended in scope to other techniques and to a larger set of

products.
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3.1.4 Approach

3.1.4.1 Overview

We use a strategy which combines multiple sources of evidence with goals to effect

change in help desk processes. This work is a cross between case study and action re-

search [93]. We present this work as an introduction to an iterative case study in which we

demonstrate help desk improvement methods. This iteration concludes with opportunities

for future research in the implementation of recommended improvements and the evalua-

tion of the effectiveness of the improvements. For simplicity, we refer to this work as a case

study while acknowledging the hybrid approach described above.

3.1.4.2 Incident Data

The data used in this pilot study is described in detail in Appendix A: Help Desk Oper-

ations. In our approach, we extract a dataset D of incident history over time T for software

product P by querying the help desk database for incident records associated with the 156

selected according to the process in Appendix B. Incidents in D which are unresolved or

noted as canceled may not have values for the attributes which are of interest in our analy-

sis, so they are discarded. Values from n incident attributes are extracted from the full set

of attributes A for P. Descriptors for the incident attributes selected in this case study are

shown in Table A.1. All selected attributes have numerical values for all incident records.

For attributes with binary values where 1 = true and 0 = false, blanks are implicitly false

and are thus replaced with zeros to maintain computational tractability. The 17 attributes

in our analysis were selected based on their quantitative data, rather than text fields with

personnel information. The resulting D for our PCA consists of N incident records with n

attributes. This format is consistent with [61]. A description of the 17 incident attributes is

included in Appendix A: Help Desk Operations.
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3.1.4.3 Principal Components Analysis

We use the R statistical tool to perform PCA. The stats package includes the prcomp

method with options to center and scale the input data, in our case D. The prcomp method

centers data for each attribute by first determining the arithmetic mean of the set of values

for an attribute, then subtracting the mean from each value. Data scaling is achieved by

calculating the standard deviation of the values for an attribute, then dividing each value

by the standard deviation of the attribute data. All attributes are scaled using this standard-

ization method. We confirmed the functionality of the built-in center and scale options on

our datasets by mean-centering and scaling through manual calculations, and then applying

prcomp to the scaled datasets without the center and scale options. We then compared the

PCA results using the manual scaling methods to those obtained through use of the center

and scale options applied to raw (unscaled) data, and confirmed identical results. We in-

clude a mixture of continuous, rank order (ordinal) and categorical (1/0) variables in our

analysis, as shown in Table A.1. A discussion of the suitability of PCA with a mixture of

variable types is included in [61]. PCA is justified as suitable with both heterogeneous and

non-heterogeneous data types by referring to the overall objective of PCA - to determine

a subset of variables responsible for most of the variation in the dataset. The discussion

in [61] recognizes challenges when interpreting linear functions of continuous variables vs.

that of categorical variables but does not exclude ordinal and categorical variables from the

suitability of PCA. Not all authors concur with this position [81]. We refer to our hybrid

case study approach which also includes an exploratory component regarding the use of

binary data with PCA. A future iteration could accommodate techniques designed specif-

ically for the treatment of categorical data with PCA. In this case study we adopt the use

of continuous, rank order and categorical data with PCA as is successfully demonstrated

in [21, 127]. As noted in Table A.1, there are differences in scales between some of the

attributes in our resulting dataset. Further analysis of the dataset in this case study shows
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large differences in the standard deviation between many of the attributes. This motivates

us to standardize our data as described in [61] by mean-centering the data for each attribute,

then dividing by the respective standard deviation prior to applying PCA. For a dataset with

n attributes, a PCA of the standardized data produces an n by n matrix M of factor loadings.

The set of rows r1 through rn of M hold the loadings of each factor (principal component)

such that each factor is interpreted as a linear combination of the standardized attributes in

the original dataset D. Each column c1 through cn is comprised of a vector of n attribute

loadings, one for each attribute. To facilitate analysis of M, the columns are labeled PC1

through PCn and the rows are labeled a1 through an. The principal components are ordered

as PC1 through PCn, such that PC1 accounts for the most variance in the dataset and PCn

accounts for the least variance.

V ar(PC1) ≥ V ar(PC2) ≥ ... ≥ V ar(PCn) ≥ 0 (3.1.1)

Each row ri in M corresponds to attribute ai in the original dataset. Each column cj

in M contains the vector of loadings for attributes 1 through n, for PCj . A decision can

be made regarding a cutoff threshold for the number of principal components to be ac-

cepted and rejected in the analysis. Components with higher loadings are of interest in this

analysis. Using a component selection method in [1], the Kaiser criterion is applied by

selecting components with an eigenvalue (of the correlation matrix) greater than one. A

threshold k is established by this method, where 1 ≤ k ≤ n. Application of k returns PC1

through PCk which become the target of our analysis for attribute relationships and pro-

cess improvements. From the k principal components derived using the threshold method

described above, a loading from each attribute is assigned to no more than one principal

component by the following method. PCA conventions justify selection of the attribute

loading for principal component PCj based on a loading threshold of 0.32 [1]. For each

attribute ai, the principal component with the largest absolute value greater than 0.32 in k
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attribute loadings is selected. In other words, an attribute is viewed to belong to the princi-

pal component where the attribute has the highest positive loading [127] greater than 0.32.

Completion of this selection method for attributes a1 through an results in n′ ≤ n flagged

loadings, each of which is associated with one principal component. For 0 < k ≤ n, each

principal component will contain zero or more flagged attribute loadings but not more than

n−k+1. With our flagged attributes in the set of k principal components, we are positioned

to extract attribute relationships. We observe for each principal component PCj there are

0 ≤ mj ≤ n − k + 1 flagged attributes. For mj > 1 we form all possible unique pairwise

relationships between flagged attributes. We note that the number of unique attribute pairs

prj for mj flagged attributes is

prj =

mj∑
q=1

(q − 1) (3.1.2)

Because we permit mj = 1, we maintain interest in all factors which have exactly one

flagged attribute and address these singleton instances through separate analysis.

3.1.4.4 Results and Interpretation

With our flagged attribute pairs and any singletons identified, we may proceed to the

interpretation phase of our approach. Before interpretation, we assign roles to the attributes

such that each attribute is an input or an output. The role assignment strategy assists us

in defining preferred attribute pair relationship behavior. Table A.1 is annotated with the

assigned roles for all attributes. Domain knowledge gained through the engagement of help

desk managers in our case study confirms the following incident attribute pair relationships

model preferred incident resolution behavior. The following notation is used to describe

attribute pair behavioral relationships:

au{↑ | ↓} ⇒ av{↑ | ↓} (3.1.3)
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The notation is interpreted as “in attribute pair (au, av) for u 6= v, as au {increases ↑

or decreases ↓}, av {increases ↑ or decreases ↓}. The attribute relationship

A1 ↑ ⇒ A14 ↓ (3.1.4)

means “as incident urgency increases, minutes to respond to incidents decreases.” Attribute

relationships are interpreted in the context of the behavioral tendency of all N incidents.

All attribute pairs for each factor are annotated in this manner. For factors with exactly one

flagged attribute such as

A7 ↑ (3.1.5)

behavior in the incident set is interpreted as “the number of matches to any other incident

varies independently from other attributes.”

We have a priori knowledge of preferred incident resolution outcomes from operational

familiarity with IT service management. These outcomes are validated through interviews

with two managers of the company’s help desk. Some examples of desirable relationships

between the inputs and outputs defined in Table A.1 include (3.1.4), and

• A3 ↑ ⇒ A15 ↓ as incident priority increases, hours to resolve incidents decreases.

• A5 ↑ ⇒ A4 ↑ as incidents marked as resolvable during initial contact with the help

desk increase, resulting resolution through initial contact also increases.

Table 3.1 shows a set of desirable attribute relationships between inputs and outputs. In this

case study, the discovery of desirable incident resolution behavior confirms help desk pro-

cesses are beneficial for the products under investigation. Similarly, undesirable attribute

relationships which are not observed through PCA imply help desk operations are working,

or at least avoid detrimental processes. We are equally interested in knowing about desired

behavior which is not apparent in our principal components, and relationships which do

not follow desired behavior, as these form the basis for corrective action and operational
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improvements. From our observations of incident resolution behavior, we construct recom-

mendations for help desk managers to improve help desk functionality.

3.1.4.5 Process

We summarize our process as follows:

1. Classify each attribute as an input or an output.

2. Define attribute input/output relationships which are desirable.

3. Perform a PCA on the incident record set.

4. Identify and then compare attribute relationships in each principal component with

the set of desired relationships.

5. Categorize attribute pairs and singletons. Category IDs precede their description:

(a) (C1) observed input/output relationships which follow desirable behavior

(b) (C2) observed input/output relationships which do not follow desirable behavior

(c) (C3) non-observed input/output relationships which follow desirable behavior

(d) (C4) non-observed input/output relationships which follow undesirable behav-

ior

(e) (C5) observed relationships (not constrained to input/output types) which con-

firm

i. (C5.1) consequential desired behavior

ii. (C5.2) consequential undesired behavior

iii. (C5.3) consequential behavior that is neither desired or undesired

6. Form recommendations based on categorized observed and unobserved attribute pair

relationships.
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Table 3.1: Desirable attribute pair relationships

(AP1) A1 ↑ incident urgency ⇒ A4 ↑ FCR compliant
(AP2) A1 ↑ incident urgency ⇒ A12 ↓ total transfers
(AP3) A1 ↑ incident urgency ⇒ A14 ↓ minutes to respond
(AP4) A1 ↑ incident urgency ⇒ A15 ↓ hours to resolve
(AP5) A1 ↑ incident urgency ⇒ A16 ↑ RTP compliant
(AP6) A2 ↑ incident impact ⇒ A4 ↑ FCR compliant
(AP7) A2 ↑ incident impact ⇒ A12 ↓ total transfers
(AP8) A2 ↑ incident impact ⇒ A14 ↓ minutes to respond
(AP9) A2 ↑ incident impact ⇒ A15 ↓ hours to resolve
(AP10) A2 ↑ incident impact ⇒ A16 ↑ RTP compliant
(AP11) A3 ↑ incident priority ⇒ A4 ↑ FCR compliant
(AP12) A3 ↑ incident priority ⇒ A12 ↓ total transfers
(AP13) A3 ↑ incident priority ⇒ A14 ↓ minutes to respond
(AP14) A3 ↑ incident priority ⇒ A15 ↓ hours to resolve
(AP15) A3 ↑ incident priority ⇒ A16 ↑ RTP compliant
(AP16) A5 ↑ FCR resolvable ⇒ A4 ↑ FCR compliant
(AP17) A5 ↑ FCR resolvable ⇒ A12 ↓ total transfers
(AP18) A5 ↑ FCR resolvable ⇒ A13 ↓ incident escalated
(AP19) A5 ↑ FCR resolvable ⇒ A14 ↓ minutes to respond
(AP20) A5 ↑ FCR resolvable ⇒ A15 ↓ hours to resolve
(AP21) A5 ↑ FCR resolvable ⇒ A16 ↑ RTP compliant
(AP22) A6 ↑ incident match ⇒ A4 ↑ FCR compliant
(AP23) A6 ↑ incident match ⇒ A12 ↓ total transfers
(AP24) A6 ↑ incident match ⇒ A13 ↓ incident escalated
(AP25) A6 ↑ incident match ⇒ A15 ↓ hours to resolve
(AP26) A17 ↑ RTP eligible ⇒ A4 ↑ FCR resolvable
(AP27) A17 ↑ RTP eligible ⇒ A12 ↓ total transfers
(AP28) A17 ↑ RTP eligible ⇒ A13 ↓ incident escalated
(AP29) A17 ↑ RTP eligible ⇒ A14 ↓ minutes to respond
(AP30) A17 ↑ RTP eligible ⇒ A15 ↓ hours to resolve
(AP31) A17 ↑ RTP eligible ⇒ A16 ↑ RTP compliant

Relationships in categories (C1) and (C5.1) confirm preferred help desk resolution

methodologies. We are equally interested in relationships in (C2) and (C5.2). These expose

opportunities to make recommendations for improvements. The breakdown of relationships

in (C5) is provided to categorize output/output relationships which make sense based on our

knowledge of help desk operations, yet provide a basis for improvements. In other words,
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some relationships are a consequence of how the help desk operates, but demonstrate un-

desirable behavior for which improvement opportunities may exist. Some output/output

relationships are categorized as (C5.3) in cases where behavior between attributes is ob-

served to have no desirable or undesirable consequences on resolution outcome. We discuss

relationships in categories (C3) as missed opportunities, and in (C4) as avoidance of unde-

sirable resolution outcomes. We complete our analysis by providing recommended help

desk process changes.

3.1.4.6 Case Study

Help desk data for two desktop software products Pa and Pb were selected to obtain Da

and Db, respectively. The time interval T over which the historical data exists is the same

for both products. Pa and Pb were selected based on their scope of distribution, incident

volume, and proneness to incidents as summarized in Table 3.2 . Product A is a widely-

Table 3.2: Product Statistics

Product # Users % Users # Incidents Time period T
Pa > 100, 000 97% 2706 1/2008 - 12/2012
Pb > 60, 000 49% 343 1/2008 - 12/2012

distributed web browser plug-in for viewing videos. Employees use Product A extensively

for watching corporate training videos and viewing multimedia content that is embedded in

websites provided for various lines of business. The wide distribution, high level of use and

frequency of product updates influence the incident volume for this product. In contrast,

Product B is less widely distributed and is used infrequently. Product B is a cost-effective

solution for view-only access to graphical content created with a more expensive graphics

package. Differences in incident-proneness motivate selection of these two products in our

analysis rather than the actual intended use of the software.

For Pb we flag the mb = 16 out of seventeen attributes which meet our acceptance

criteria for loading. Recall that the number of unique attribute pairs prj for mj > 1 for
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Figure 3.1: Attribute Relationships - Product A (part 1)
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Table 3.3: Factor loadings (Product A)

Attr PC1 PC2 PC3 PC4 PC5 PC6 PC7
A1 0.282 -0.196 -0.542 0.159 -0.073 -0.087 0.080
A2 0.077 -0.067 -0.159 0.234 0.376 0.333 -0.314
A3 0.292 -0.196 -0.544 0.171 -0.035 -0.053 0.052
A4 -0.422 0.017 -0.032 -0.009 -0.042 -0.037 -0.026
A5 -0.202 -0.057 -0.249 -0.557 -0.044 -0.071 -0.018
A6 0.058 0.651 -0.213 0.015 -0.018 0.091 -0.039
A7 0.103 0.376 -0.085 0.045 0.180 -0.200 -0.284
A8 0.002 0.361 -0.151 -0.078 -0.332 0.676 0.216
A9 -0.011 -0.008 0.002 0.006 -0.408 -0.041 -0.822

A10 -0.004 0.401 -0.131 0.065 0.144 -0.373 -0.017
A11 0.055 0.219 -0.005 -0.098 -0.046 -0.429 0.242
A12 0.371 0.001 0.066 -0.307 0.073 0.026 -0.014
A13 -0.416 0.010 -0.115 0.253 0.003 -0.006 0.021
A14 0.040 -0.039 -0.024 0.081 -0.703 -0.194 0.087
A15 0.273 -0.003 0.104 0.401 0.034 0.0570 -0.105
A16 -0.408 -0.032 -0.265 0.005 0.073 -0.003 -0.004
A17 -0.203 -0.094 -0.361 -0.483 0.100 0.007 -0.090

Table 3.4: Recommendations for Preferred Help Desk Resolution Methodologies Discov-
ered - Product A

Category Relationship Recommendation
C1 A2 ↑ incident impact⇒ A14 ↓ time to respond none - process works
C5.1 A1 ↓ urgency⇒ A3 ↓ priority none - process works

PCj is found through (3.1.2). For Pa only one flagged attribute (A9) for PC7 exists. We

note in Table 3.7 for Pb, PC3 and PC6 each have exactly one flagged attribute.

First, we analyze Pa, the more incident-prone product, for all attribute pairs detected in

our PCA. We present a graphical representation of observed attribute pairs in Figures 3.1

and 3.2, and compare those to the desired attribute pairs listed in Table 3.1. The same de-

sired attribute pairs in Table 3.1 are presented in as shaded cells in Table 3.6 with double

arrows indicating the preferred directional tendency of the related attributes. When overlaid

with the observed attribute pairs shown as single arrows (also indicating the directional ten-

dency of the attributes), we see which observed attribute pairs coincide with desired pairs.

For Pa we see exactly one observed attribute pair A2 ↑ (incident impact)⇒ A14 ↓ (min-

utes to respond) which coincides with a preferred pair, inclusive of directional tendency.

The observed pair is identified as (AP8) in Table 3.1. Using Equation 3.1.2, the observed
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Figure 3.2: Attribute Relationships - Product A (part 2)

 

Table 3.5: Recommendations for Non-preferred Help Desk Resolution Methodologies Dis-
covered - Product A

Category Relationship Recommendation

C2 A15 ↑ resolution time⇒ A17 ↓ RTP eligible
define an escalation time
threshold tescl < trtp to
preserve RTP compliance

C5.2

A4 ↓ FCR compliant⇒ A12 ↑ incident transfers

define an escalation time
threshold tescl < trtp to
minimize incident transfers

A4 ↓ FCR compliant⇒ A16 ↓ RTP compliant
A5 ↓ FCR eligible⇒ A17 ↓ RTP eligible
A12 ↑ incident transfers⇒ A13 ↓ incident escalated
A12 ↑ incident transfers⇒ A16 ↓ RTP compliant
A13 ↓ incident escalated⇒ A16 ↓ RTP compliant
A4 ↓ FCR compliant⇒ A13 ↓ incident escalated
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set of attribute pairs and singletons are analyzed for recommendations. The resulting rec-

ommendations are shown in Table 3.4 and Table 3.5 for Pa.

We refer to our graphical representation of attribute pair relationships in Figure 3.1

to further assist our interpretation of resolution behavior and the construction of recom-

mended process changes. A comparison of the observed attribute pair relationships found

from the flagged component loadings for Pa in Table 3.3 to desired attribute relationships

in Table 3.1 shows us attribute relationships which confirm desired incident resolution at

the help desk. These are categorized as (C1). Relationships of type (C1) are limited to

input/output combinations based on attribute roles defined in Table A.1. (C5.1) relation-

ships are of type input/input or output/output in our approach summary, and are referred

to as consequential relationships. Attribute combinations which are contrary to desired be-

havior are categorized as (C2) (input/output) and (C5.2) (input/input or output/output). No

recommendations for process adjustments are made for (C1) and (C5.1) since these rela-

tionships imply intended behavior. For (C2) and (C5.2), we construct recommendations

with intentions of changing undesirable attribute relationships into desirable ones.

We investigate desired relationships from Table 3.1 which do not show up in our compo-

nent loadings. These are categorized as (C3). The absence of desirable resolution behavior

forms the basis of recommendations for practices which target improvements at the help

desk. We observe only one (C1) relationship in Pa which is desirable (AP8). This relation-

ship shows incidents with higher potential impact to the desktop computing environment

tend to get the attention of help desk technicians faster, through decreased time for the help

desk to respond. While this is noted as a desired practice, most incidents are given their

designations for impact, urgency and resulting prioritization after the help desk technician

responds to and initiates documentation of the incident. Only incidents submitted through

the web portal have attribute values established for these parameters prior to the help desk

responding to the incident submission. This key difference between the origin of selected

levels of impact and urgency (by the submitter for web submissions and by the help desk for
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telephone contact) suggests the (AP8) relationship should be interpreted in the context of

the incident submission method. Selection of inappropriate levels of urgency and impact by

the end user might be made in the interest of getting faster service rather than representing

the actual urgency of an incident. The single (C5.1) output/output observed relationship in

Pa is listed in Table 3.4. For this we make no recommendation for change since we find the

consequence of decreased incident priority from decreased incident urgency to be accept-

able. No other desirable relationships in Table 3.1 are evident in our principal component

loadings for Pa. These missing, yet desirable relationships are categorized as (C3). The

absence of relationships with incident urgency (AP1 through AP5), priority (AP11 through

AP15) and all incident impact relationships (AP6 through AP10), with the exception of

(AP8) tell us these parametric inputs do not vary strongly with favorable outcomes such as

FCR and RTP compliance. Stated differently, efforts to categorize incidents as urgent and

of higher impact do not really help meet service goals of incident resolution during a single,

initial contact with the help desk. Similarly, time-based targets established for restoring pro-

ductivity through incident resolution are not strongly tied to urgency, impact, and priority.

Two input attributes, FCR resolvable and RTP eligible show no strong variance with reso-

lution efficiency such as minimizing wait time, incident transfers, and time to resolve the

problem. Incident matching, an effort which is intended to facilitate resolution through ref-

erence to problem or solution similarity, incident transfers, and time to resolve the problem,

show no strong variance with these outcomes. In fact, attribute relationships with strong

loadings in Pa for incident match vary mostly with matches to other archival record types

such as known errors and problems. Unobserved desirable behavior for Pa motivates us to

draw attention to RQ3 in which we seek to identify help desk operational emphasis which

may be ineffective in the overall goal to quickly resolve problems. Based on our analysis of

Pa, we propose the following recommendation to address missing desirable relationships.

• Efforts to promote incident matching should be evaluated for their cost vs. benefits

since they do not seem to influence preferred resolution outcomes.
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Table 3.6: Observed attribute relationships pairs with desirable attribute pairs overlaid -
Product A

A1 A2 A3 A4 A5 A6 A7 A8 A9
A1 ⇑ ↓ - ↓ ⇑*
A2 ⇑ - ⇑*
A3 ⇑ - ⇑*
A4 -
A5 ⇑ ⇑* -
A6 ⇑ ↑ ⇑* - ↑
A7 -
A8 -
A9 ↓ ↓
A10
A11
A12
A13
A14
A15
A16
A17 ⇑ ⇑*

A10 A11 A12 A13 A14 A15 A16 A17
A1 ⇑ ⇓* ⇓* ⇓* ⇑*
A2 ⇑ ↑ ⇓* ↓⇓* ⇓* ⇑*
A3 ⇑ ⇓* ⇓* ⇓* ⇑*
A4 ↓ ↑ ↓ ↓
A5 ⇑ ↓ ⇓* ⇓* ⇓* ⇓*↑ ⇑* ↓
A6 ⇑ ↑ ↑ ⇓* ⇓* ⇓*
A7 ↑ ↑
A8 ↑ ↓
A9
A10 -
A11 -
A12 ↑ - ↓ ↓
A13 ↓ - ↓
A14 -
A15 ↑ - ↓
A16 -
A17⇑ ⇓* ⇓* ⇓* ⇓* ⇑* -

Notes:
1. Cells with asterisks identify desired pairs for respective row/col attributes
2. Double arrows show directional tendency of desired attribute pairs
3. Single arrows show directional tendency of observed attribute pairs
4. Observed pairs overlaid with desired pairs show comparison of desired vs. observed resolution behavior.
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Table 3.7: Factor loadings (Product B)

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
A1 0.235 0.514 -0.333 0.022 0.003 0.105 0.082 -0.014
A2 0.206 0.111 -0.122 0.266 -0.426 -0.109 -0.025 0.067
A3 0.280 0.505 -0.319 0.095 -0.022 0.071 0.076 -0.004
A4 -0.478 0.021 -0.062 -0.006 -0.210 0.138 0.223 0.016
A5 -0.287 0.214 -0.199 -0.507 -0.049 -0.016 0.103 -0.018
A6 -0.053 0.389 0.570 0.011 -0.120 0.022 -0.009 0.010
A7 0.004 0.265 0.407 0.095 0.237 -0.201 0.447 0.115
A8 -0.075 0.2780 0.389 -0.075 -0.388 0.220 -0.437 -0.096
A9 -0.074 -0.012 -0.030 0.000 -0.193 0.102 0.285 0.765

A10 -0.071 -0.015 -0.026 0.024 -0.240 0.008 0.497 -0.614
A11 0.094 0.119 0.171 -0.024 0.522 0.079 0.139 -0.020
A12 0.455 -0.102 0.084 -0.018 -0.019 -0.262 -0.151 -0.001
A13 -0.200 -0.038 -0.064 0.617 -0.090 0.073 -0.021 0.025
A14 -0.118 0.123 -0.138 -0.283 0.176 0.281 -0.261 0.050
A15 0.192 -0.123 0.068 -0.325 -0.312 -0.209 0.191 0.072
A16 -0.380 0.193 -0.113 0.261 0.209 -0.284 -0.195 -0.015
A17 -0.209 0.174 -0.094 -0.113 -0.060 -0.755 -0.153 0.035

Relationships categorized as (C4), undesirable ones which do not show up in our PCA, are

simply noted as such. (C5.3) relationships are treated similarly, as they have no particular

desirable or undesirable consequences on help desk processes.

We turn our attention to the observed set of attribute pairs for Pb, the less incident-prone

product. After performing a PCA on the incident dataset for Pb, we apply Equation 3.1.2 to

the component loadings shown in Table 3.7 to obtain the attribute pairs shown in Table 3.8.

We apply the same categorization schema used for Pa and produce graphical representa-

tions of attribute relationships in Figures 3.3 and 3.4 to assist our analysis. In Table 3.8 we

note the absence of observed attribute pairs which coincide with preferred attribute combi-

nations through the presentation of overlaid results. Referring to the category codes defined

in the summary of our approach described earlier, and used in the analysis of Pb, we have

no observed relationships categorized as (C1). For (C5.1) we observe one consequential,

desired output/output relationship which confirms the value of incident escalation in the re-

duction of resolution time. There is coincidence between observed and preferred pairs with

Pb, but the direction in which the attributes show tendency does not fully coincide. These

observed pairs are categorized as (C2) and (C5.2) and are the undesirable relationships for

which we construct recommendations for process adjustments as shown in Table 3.10.
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Figure 3.3: Attribute Relationships - Product B (part 1)

 

Figure 3.4: Attribute Relationships - Product B (part 2)
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Table 3.8: Observed attribute relationships pairs with desirable attribute pairs overlaid -
Product B

A1 A2 A3 A4 A5 A6 A7 A8 A9
A1 ⇑ ↑ - ↑ ⇑*
A2 ⇑ - ⇑*
A3 ⇑ - ⇑*
A4 -
A5 ⇑ ⇑* -
A6 ⇑ ↑ ⇑* -
A7 ↑ - ↓
A8 -
A9
A10
A11
A12
A13
A14
A15
A16
A17 ⇓ ⇑*

A10 A11 A12 A13 A14 A15 A16 A17
A1 ⇑ ⇓* ⇓* ⇓* ⇑*
A2 ⇑ ↓ ↑ ⇓* ⇓* ⇓* ⇑*
A3 ⇑ ⇓* ⇓* ⇓* ⇑*
A4 ↓ ↑ ↓
A5⇑↓ ⇓* ⇓*↑ ⇓* ⇓* ↓ ⇑*
A6⇑↑ ⇓* ⇓* ⇓*
A7
A8
A9 ↑ ↓
A10 -
A11 -
A12 ↑ - ↓
A13 ↑ - ↓
A14 -
A15 -
A16 -
A17⇑↓ ⇓* ⇓* ⇓* ⇓* ⇑* -

Notes:
1. Refer to notes at bottom of Table 3.6
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Table 3.9: Recommendations for Preferred Help Desk Resolution Methodologies Discov-
ered - Product B

Cat. Relationship Recommendation
C5.1 A13 ↑ urgency⇒ A15 ↓ resolution time none - processes are working

Table 3.10: Recommendations for Non-preferred Help Desk Resolution Methodologies
Discovered - Product B

Cat. Relationship Recommendation

C2
A5 ↓ FCR resolvable⇒ A13 ↑ incident escalated define an escalation time

threshold tescl < trtp to
preserve RTP complianceA5 ↓ FCR resolvable⇒ A15 ↓ resolution time

C5.2

A4 ↓ FCR compliant⇒ A16 ↓ RTP compliant define an escalation time
threshold tescl < trtp to
preserve RTP complianceA12 ↑ total transfers⇒ A16 ↓ RTP compliant

A4 ↓ FCR compliant⇒ A12 ↑ total transfers
define an escalation time
threshold tescl < trtp to
minimize incident transfers

For category (C2) we observe two relationships which have (A5) (resolvable through

FCR) in common. A negative tendency for FCR resolvability varies with a positive ten-

dency toward incident escalation, and a reduction in incident resolution time. As discussed

earlier, relatively few of the incidents in our dataset are marked as not resolvable through

FCR, yet sufficient variance exists between those incidents to demonstrate a trend toward

1) incidents being escalated (A13) and 2) shorter resolution times (A15). An interesting

triangulation of attribute relationships within these two pairs would suggest managerial use

of flagging certain incidents as not resolvable through FCR (an input in our analysis) may

in fact be an effective way to achieve shorter resolution times through incident escalation.

Relationships produced from our PCA using Pb categorized as (C5.2), consequential

undesirable resolution behavior, deserve similar analysis. In two out of three relationships,

(A16) RTP compliance varies negatively as resolution through FCR (A4) decreases and to-
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tal transfers (A12) increases. Again, a three-way relationship is discovered which in this

case confirms excessive transferring of incidents to lateral groups at the help desk nega-

tively influences FCR and RTP compliance. As with Pa, a recommendation to define a

time threshold by which escalation is invoked to preserve FCR and RTP compliance is rec-

ommended. Similar to conclusions reached in our analysis of Pa, a recommendation for a

time-based threshold for escalation would minimize incident transfers in favor of engaging

a priority manager. As with Pb, the missing, desirable relationships (C3) may be compared

to those in (C2) to assess what is not being achieved at the help desk vs. what managers

would like to see achieved. For example, we observe two output/output involving attributes

related to incident matching which do not relate to attaining FCR compliance, and mini-

mization of incident transfers, escalations, and resolution time. These are (AP22) through

(AP25) in Table 3.1. This was also noted in Pa. In this analysis we performed a separate

PCA for Pa and Pb, and made help desk process recommendations through independent

product analyses. Although we observed differences in attribute relationship pairs in the

two products, we were able to observe some similarities in attribute behavior. Our analy-

sis of Pa and Pb produces similar help desk process recommendations driven by different

attribute relationships. The outcome of our analysis of both products shows us escalation

in the incident life cycle during which resolution has not occurred may help achieve ser-

vice goals. We observed triangular attribute relationship structures in both products which

provided additional insight into help desk processes. These types of relationship structures

establish opportunities for further research.

3.1.5 Lessons Learned and Conclusions

In our research we have demonstrated success in using PCA to analyze data for pro-

cess improvements at an IT help desk in a large corporation. Through our approach to

finding recommendations for improvements in help desk operations, we have shown ways

to discover primary relationships between incident attributes using PCA. Combinations of
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help desk incident attributes were identified using best practices in PCA. Pairwise relation-

ships were formed using attribute combinations and compared to knowledge of preferred

resolution behavior gained from interaction and experience with help desk operations. The

validity of our approach and interpretations were confirmed by help desk managers. Our

conclusions led us to formulate recommendations for process improvements.

Having demonstrated success with the application of PCA to help desk incidents in

Pilot 1, extension of the technique to other types of data was selected as the next step in this

research. The generalizability to survey data analysis is described in Section 3.2, Pilot 2:

Extension of PCA to Survey Data Analysis.

3.2 Pilot 2: Extension of PCA to Survey Data Analysis1

3.2.1 Summary

Pilot study 2 demonstrates the generalizability of the techniques we used with IT help

desk incidents in Pilot study 1. Specifically, PCA is used in this next pilot to discover sta-

tistical relationships between survey responses. An example of a survey response relation-

ship between two TRUE/FALSE questions is “respondents who answered TRUE to survey

question number one responded FALSE to question number two.” Knowing relationships

between survey responses offers insight into the data that is not easily identified through

descriptive statistics. Understanding the strength of the relationships is what PCA con-

tributes to survey data analysis. PCA identifies relationship strength (or weakness) between

datasets in terms of the level of their statistical covariance (or non-covariance). PCA was

used in pilot study 1 to identify the relationship strength between incident attributes. The

stronger relationships expressed greater covariance (negative or positive) and were retained

in favor of weaker relationships with little covariance. In Pilot study 2, survey response
1This pilot study is included with reference to contributions by Dr. Julia Varnell-Sarjeant in her PhD thesis

on the subject of software reuse in embedded vs. non-embedded systems [121]. This survey is also used by
Varnell-Sarjeant et al. [122]. Dr. Varnell-Sarjeant designed and conducted the survey.
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relationships with stronger covariance are retained to help express the outcome of the sur-

vey. Response relationships with weak covariance are interpreted as being weakly related

and are considered to a lesser degree in the expression of the survey results. Essentially

this approach is a survey data reduction technique, just as the approach in Pilot 1 was an

incident attribute reduction technique.

Pilot study 2 was a collaborative effort, with contributions made by the following au-

thors.

• Dr. Julia Varnell-Sarjeant designed the survey on the subject of artifact reuse with em-

bedded and non-embedded systems, conducted semi-structured interviews of practi-

tioners, and collected all survey data. Additionally, Dr. Varnell-Sarjeant performed

a literature search for related work on the subject of reuse with embedded and non-

embedded systems. Dr. Varnell-Sarjeant was the primary contributor to the interpre-

tation of the analysis of the survey results and conclusions drawn from the outcome

of the survey.

• Dr. Andreas Stefik performed the statistical analysis of the survey results.

• Joseph Lucente contributed to the background section through a literature search on

the subject of PCA and performed PCA on the survey results.

• Dr. Anneliese Andrews facilitated the interpretation of the PCA results with Dr.

Varnell-Sarjeant and Joseph Lucente.

• Dr. Anneliese Andrews provided oversight in an advisory role during all phases of

the research.

3.2.2 Purpose

The purpose of Pilot study 2 is to demonstrate the generalizability of the technique in

Pilot study 1 to survey data. Case study generalizability addresses concerns for external

54



www.manaraa.com

validity by demonstrating a technique that is used in a specific scope or context can be

extended to a different scope of study [128]. Pilot study 1 is conducted in an IT help desk

environment whereas Pilot study 2 is conducted with data from a survey on reuse strategies.

The approach taken in Pilot study 2 is designed to understand reuse strategies in the

context of embedded vs. nonembedded systems. A search of existing literature left sev-

eral questions that needed to be answered in order to understand and implement successful

reuse. First was whether industry practitioners share the same reuse experience as the re-

search for embedded and nonembedded systems. Second is the question of what artifacts

can be reused for successful outcomes. Third is the whether there is a difference between

embedded systems and nonembedded systems in outcomes. Thus, the following research

questions were established for Pilot study 2:

RQ2-1 Do embedded systems use different development approaches than nonembed-

ded systems? This question tries to identify what development approaches are being used

on embedded systems vs nonembedded systems projects and how effective they are with

regard to reuse. We also want to discover whether reuse strategies are used in combination.

Reuse in various development approaches have been studied singly, but are there additional

benefits of using the development methods in combination? The null hypothesis assumes

that the same development approaches are used whether the system is embedded or nonem-

bedded.

RQ2-2 Do embedded systems reuse different artifacts than nonembedded systems?

What artifacts are being reused on what types of projects? Are there artifacts more com-

monly reused in embedded systems than in nonembedded systems? The null hypothesis

assumes that embedded and nonembedded systems reuse the same artifacts at the same

level with comparable outcomes.

RQ2-3 Do reuse outcomes vary between embedded systems and nonembedded sys-

tems? This question is central to our research. It is designed to determine whether there

is a difference in reuse effectiveness or preferred development approaches based on project
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type. Positive outcomes are measured by: fewer labor hours, fewer defects, less test time,

fewer items to be tested, and less risk. While many aspects of software reuse have been

studied deeply, our literature review did not surface this specific comparison. The null hy-

pothesis assumes that there is no significant difference in the effectiveness of reuse whether

the project is an embedded or a nonembedded system.

3.2.3 Scope

The data analyzed in Pilot study 2 comes from a survey conducted in a large aerospace

company, on the subject of system artifact reuse strategies [122]. The primary techniques

used to analyze the results of the survey were MANOVA and PCA. The analysis with

MANOVA was conducted by two of the authors. The PCA was performed by the author

of this thesis and interpreted by the other authors. Therefore, the scope of Pilot study 2 is

limited to the use of PCA to interpret the survey results.

3.2.4 Approach

To augment our statistical analysis, we performed multiple PCA to the survey response

data of the survey questions. The intent was to determine whether there were survey ques-

tions that tended to vary together, particularly questions related to project attributes and

outcomes. Survey response variables are derived from the four categories of survey ques-

tions: 1) system type, 2) development approaches, 3) reuse artifacts, and 4) outcomes. A

goal-based strategy for variable selection is used. In each PCA we select a subset of vari-

ables in the interest of discovering the relationships between the variables, independent of

all excluded variables. Table 3.11 identifies the variables included in each PCA that was

performed. Test ‘All’ focuses on the relationships between responses for all survey question

categories and therefore includes all variables. In test ‘A’ we are interested in the relation-

ships between system type and reuse artifacts, independent of reuse approaches and out-
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comes. Tests ‘A1’ and ‘A2’ refine test ‘A’ by including the subset survey responses which

indicate embedded system type only (test ‘A1’) and non-embedded system type (test ‘A2’),

and the artifacts used for reuse. In test ‘A3’ we are interested in the relationships between

the selection of artifacts, independent of system type, reuse approaches and outcomes. A

similar approach is taken for variable selection in the remaining tests in Table 3.11.

Table 3.11: PCAs performed

PCA ID Variables
All All survey responses
A System type, artifacts
A1 Embedded system type, artifacts
A2 Non-embedded system type, artifacts
A3 Artifacts only (from both system types)
B System type, development approaches
B1 Embedded system type, development approaches
B2 Non-embedded system type, development approaches
B3 Development approaches only (from both system types)
C System type, outcome
C1 Embedded system type, outcome
C2 Non-embedded system type, outcome
C3 Outcomes only (from both system types)

Table 3.12: Principal component relationships in survey responses

ID Relationship
All 1 A reduction in the number of items for reuse varies independently.
All 2a An increase in the number of tested products varies with a decrease in labor savings

and less reduction in test time.
All 2b Less labor savings through reuse varies with less reduction in test time
All 3 Greater use of a component based approach varies with less reuse of drawings.
All 4a Greater use of a heritage/ad hoc approach varies with less reuse of tested clusters and

greater risk reduction.
All 4b Less reuse of tested clusters varies with more risk reduction.
All 5a Greater use of a model based approach varies with less reuse of code and more reuse

of models.
All 5b Less reuse of code varies with greater reuse of models.
All 6 The level of reuse of hardware varies independently.
All 7 Embedded system type varies with less use of COTS/GOTS approach.
All 8 Greater use of a product line approach varies with more reduction in defects.
A 1a Greater reuse of requirements varies with more reuse of architecture and tested prod-

ucts.
A 1b Greater reuse of architecture varies with more reuse of tested products.
A 2a Greater reuse of code varies with less reuse of drawings and hardware.
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Table 3.12: Principal component relationships in survey responses (cont.)

ID Relationship
A 2b Less reuse of drawings varies with less reuse of hardware.
A 3 Less reuse of models varies with less reuse of use cases.
A 4 Non-embedded system type varies with less reuse of tested clusters.
A1 1a Less reuse of requirements varies with less reuse of architecture and use cases.
A1 1b Less reuse of architecture varies with less reuse of use cases.
A1 2 Greater reuse of code varies with less reuse of drawings.
A1 3a Less reuse of models varies with more reuse of hardware and tested products.
A1 3b Greater reuse of hardware varies with more reuse of tested products.
A2 1a Greater reuse of requirements varies with more reuse of architecture and tested prod-

ucts.
A2 1b Greater reuse of architecture varies with more reuse of tested products.
A2 2a Less reuse of code varies with more reuse of drawings and hardware.
A2 2b Greater reuse of drawings varies with more reuse of hardware.
A2 3a Less reuse of models varies with less reuse of use cases and tested clusters.
A2 3b Less reuse of use cases varies with less reuse of tested clusters.
A3 1a Greater reuse of requirements varies with more reuse of architecture and tested prod-

ucts.
A3 1b Greater reuse of architecture varies with more reuse of tested products.
A3 2a Less reuse of code varies with more reuse of drawings and hardware.
A3 2b Greater reuse of drawings varies with more reuse of hardware.
A3 3 Less reuse of models varies with less reuse of use cases.
B 1 Greater use of a component based approach varies with more use of model based

approach.
B 2 Greater use of a product line based approach varies with less use COTS/GOTS based

approach.
B 3 Non-embedded system type varies with less use of heritage/ad hoc approach.
B1 1 Less use of a component based approach varies with less use of COTS/GOTS ap-

proach.
B1 2 Greater use of a product line based approach varies with less use heritage/ad hoc

approach.
B1 3 The level of use of the model based development approach varies independently.
B2 1 Less use of a component based approach varies with less use of model based approach.
B2 2 The level of use of a COTS/GOTS based development approach varies independently.
B2 3 Less use of a product line approach varies with less use of heritage/ad hoc approach.
B3 1 Less use of a component based approach varies with less use of model based approach.
B3 2 The level of use of a COTS/GOTS based development approach varies independently.
B3 3 Greater use of product line approach varies with greater use of heritage/ad hoc ap-

proach.
C 1a Greater labor savings varies with greater reduction in test time and items to be tested.
C 1b Greater reduction in test time varies with greater reduction in items to be tested.
C 2 System type varies independently.
C 3 Greater defect reduction varies with more risk reduction.
C1 1a Less labor savings through reuse varies with less reduction in test time and items to

be tested.
C1 1b Less reduction in test time varies with less reduction in items to be tested.
C1 2 The level of defect reduction varies independently.
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Table 3.12: Principal component relationships in survey responses (cont.)

ID Relationship
C1 3 The level of risk reduction varies independently.
C2 1 Greater reduction in test time varies with a greater reduction in items to be tested.
C2 2 The level of labor savings varies independently.
C2 3 Greater defect reduction varies with greater risk reduction.
C3 1 Greater reduction in test time varies with a greater reduction in items to be tested.
C3 2 The level of risk reduction varies independently.
C3 3 Greater labor savings varies with less defect reduction.

3.2.4.1 PCA Results

The results from our PCA of reuse survey responses are discussed for each of the tests

identified in Table 3.11. In each discussion we refer to specific relationships found in the

principal components. Each relationship is uniquely identified in Table 3.12. The rela-

tionship identifier is constructed from the PCA ID in Table 3.11 and the specific principal

component in which the relationship is identified. For example, relationship ‘All 1’ in Ta-

ble 3.12 describes the relationship found in principal component 1 in test ‘All’. In some

principal components there are relationships between three variables. For those we identify

the relationships, for example, as ‘All 2a’ and ‘All 2b’. The relationships are determined

from the loadings produce for each principal component. The loadings identified through

the PCA interpretation process describe in our approach are presented in bold. We include

the loading tables produced for each PCA listed in Table 3.11 in Appendix B. In the loading

tables, PCA relationships are determined by the responses with higher relative loadings, as

indicated in boldfaced font.

3.2.4.2 Test ‘All’ Results

We begin with a discussion of the relationships discovered through inclusion of all sur-

vey responses in test ‘All’. Eleven relationships identified in Table 3.12 are noted from the

eight principal components resulting from test ‘All’. We refer to the identifiers in Table
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3.12 when discussing specific survey response relationships. In relationship All 1 we dis-

cover the outcome of reduction in the number of defects through reuse is independent of

both embedded and non-embedded systems, the development approach that is taken and the

artifacts selected for reuse. In other words, even when a reduction in defects is noted in the

survey responses as an outcome of reuse, it is not influenced by system type, artifacts or

approach. In relationships All 2a and All 2b, a three-way relationship between the reuse

artifact of tested products and the outcomes of labor savings and test time is evident. We

see in All 2a that as more tested products are selected for reuse artifacts, the less labor is

saved and the less reduction in test time is realized. This makes sense since greater effort is

associated with more tested products, resulting in an impact to labor savings and test time.

Relationship All 3 shows us the more component-based development approach is taken, the

less drawings are used for reuse artifacts. This is an example of a relationship that is not

likely to be discovered through a simple inspection of survey results and demonstrates the

usefulness of PCA. In the context of reuse with embedded and non-embedded systems, this

relationship suggests components are selected for reuse on the basis of their maturity, i.e.,

components consist of implemented designs such that their documentation in engineering

drawings is not needed. An interesting three-way relationship between heritage ad/hoc (a

development approach), tested clusters (a reuse artifact), and risk reduction (an outcome of

reuse) is observed in relationships All 4a and All 4b. We see that the more a heritage/ad

hoc development approach is taken, the less tested clusters are reused, and the greater a

reduction in risk is realized. When interpreted conversely, this relationship suggests greater

use of tested clusters lessens risk reduction, as would less use of a heritage ad hoc ap-

proach. These relationships could be useful to practitioners when deciding employ reuse,

and specifically for consideration in adopting a heritage/ad hoc approach while avoiding

the reuse of tested clusters in the interest of risk reduction. Relationship All 5a shows that

taking a model based development approach suggests less reuse of code and confirms the

trivial case of greater reuse of models. Additionally an implication that new code is gen-
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erated from models is evident in All 5b. Relationship All 6 shows that in both embedded

and non-embedded systems, there is a lack of dependency between reuse of hardware and

any other factors including outcome. All 7 shows us reuse with embedded systems tends

toward less reuse of a COTS/GOTS approach. Finally, in All 8 we observe using a product

line development approach tends to reduce defects in both embedded and non-embedded

systems.

3.2.4.3 Test A, A1, A2, A3 Results

Tests A, A1, A2 and A3 each include survey responses related to the selection of ar-

tifacts for reuse. We have results with and without system type in tests A and A3 respec-

tively. Tests A1 and A2 differ by including responses limited to the non-embedded system

type (Test A1) and the embedded system type (Test A2). The tests are summarized in Table

3.11. We refer to Table 3.12 when discussing specific survey response relationships.

We proceed with analyzing the results of test A in which only system type and artifacts

(with both embedded and non-embedded systems) are included in the PCA. Relationships

A 1a and A 1b present associations between three artifacts for reuse: requirements, archi-

tecture and tested products. We see that greater reuse of requirements goes hand in hand

with reuse of architecture and tested products, when both system types are considered. A 2a

and A 2b present additional associations between artifacts: The more code is reused, the

less likely hardware and drawings are reused. A 3 indicates less reuse of use cases leads

to less reuse of models. A 4 relates non-embedded system types to less reuse of tested

clusters.

In test A1 we investigate the relationship between artifacts and system type limited to

embedded systems. Relationships A1 1a and A1 1b indicate through a three way relation-

ship among requirements, architecture and use cases that if one tends to reuse use cases, one

is also unlikely to reuse architecture and requirements. The A1 2 relation between more use

of code and less use of drawings makes sense because engineering drawings have already
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been implemented and code is therefore less likely to be reused. A reduction in the need to

reuse models is evident in relationships A1 3a and A1 3b through more reuse of hardware

and tested products. There is no relationship between reduction of defects and reduction of

risks in embedded systems.

Test A2 addresses the relationship between artifacts and the non-embedded system type.

Relationships A2 1a and A2 1b confirm the results obtained earlier in A 1a and A 1b from

Test A, ie that greater reuse of requirements goes hand in hand with reuse of architecture

and tested products. Test A2, however, is specific to non-embedded systems so we observe

these relationships again, but in the context of only non-embedded systems. Relationships

A2 2a and A2 2b indicate less reuse of code is coupled with more reuse of drawings and

hardware. These associations suggest the need to redesign components when code is not

used or is not available. In relationships A2 3a and A2 3b we observe less reuse of use

cases goes hand in hand with less reuse of models and tested clusters. If we observe types

of artifacts aligned to life cycle phases, less reuse of use cases in early life cycle phases

might lead to less reuse of more developed artifacts such as models and tested clusters.

In test A3 we look at survey responses related to artifacts only, regardless of system

type. The same relationships between reuse of requirements, architecture and tested prod-

ucts found in relationships A3 1a and A3 1b in this test are found in test A where survey

responses for system type are included in the PCA. This indicates these relationships may

exist independent of system type. In A3 2a and A3 2b we also find a repeat of relationships,

this time with Test A2. In both tests A2 for reuse artifacts in which only the non-embedded

system type is considered, and A3 in where artifacts are considered regardless of system

type, we see that less use of code goes hand in hand with more reuse of drawings and

hardware. Through comparison of test A2 and A3, these same relationships seem to be in-

dependent of system type. A3 3, the last relationship in test A3, confirms what is found in

relationships A 3 and A2 3a in tests A and A2 respectively. We again observe that reusing

fewer use cases suggests reusing fewer models. Relationship A2 3a with the embedded
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system type differs from A 3 and A2 3a with both system types. From this comparison we

observe system type may not influence the relationship between the reuse of models and

use cases.

3.2.4.4 Test B, B1, B2, B3 Results

We turn out attention to an analysis of Tests B, B1, B2 and B3 which each include

survey responses related to the selection of development approaches. We have results with

and without system type in tests B and B3 respectively. Tests B1 and B2 differ by including

responses limited to the non-embedded system type (Test B1) and the embedded system

type (Test B2).

We start with test B where a PCA is performed on survey responses with development

approaches only, for both system types. We observe the first two relationships B 1 and B 2

in which two pairs of development approaches are related. We see in B 1 that a component

based approach seems to go hand in hand with a model based approach, where in B 2 selec-

tion of a product line based approach relates to less reuse of a COTS/GOTS approach. B 3

includes the non-embedded system type which suggests a tendency to use less heritage/ad

hoc development.

In test B1 development approaches are investigated limited to the embedded system

type. For this test we see where embedded system types speak against using both the

component based and COTS/GOTS approaches, identified in relationship B1 1. We also

see in B1 2 that selection of a development approach based on product line tends toward

less use of a heritage ad/hoc approach. Relationship B1 3 indicates less use of a model

based approach varies independent of other development approaches when analyzed among

the embedded system type.

Test B2 differs from B1 discussed above only through its limitation in this case to

non-embedded systems. As with B1, the first relationship associates the product line ap-

proach with another development approach, this time with the model based approach. Here
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we see where the non-embedded system types speak against using the use of a model

based approach in relationship B2 1. Relationship B2 2 indicates no association between

a COTS/GOTS approach and other development approaches for the non-embedded system

type. Relationship B2 3 exposes a major difference between embedded and non-embedded

systems. Specifically, in test B2 we see that less use of a product line based approach tends

toward less heritage/ad hoc based development in relationship B2 3, where in B1 2 the

tendency is toward more use of heritage ad hoc development.

We conclude our analysis of the PCA results of development approaches with test B3.

This test is comprised of only survey responses for development approaches with both em-

bedded and non embedded system considered. The first relationship in test B3 identified

as B3 1, associates less use of a component base development approach with less use of

a model based approach. We observed this same relationship in test B2 where survey re-

sponses related to development approaches are analyzed in the context of non-embedded

systems. While the relationship is the same, its presence now with both system types sug-

gests this relationship is not necessarily influenced by system type. Similarly, relationship

B3 2 where there is no association between a COTS/GOTS approach and other develop-

ment approaches is the same as B2 2. Again, with the difference being the non-embedded

system type in test B2 and both system types in B3, we observe this relationship may

not be influenced by system type. Relationship B3 3 exposes another difference between

embedded and non-embedded systems. In B3 3 which analyzes development approaches

independent of system type, we see that use of a product line approach tends toward more

use of heritage/ad hoc development. This relationship differs from other tests in that with

relationship B1 2, selection of a product line development approach tends toward less reuse

of heritage/ad hoc. In contrast, relationship B3 3 shows more use of heritage/ad hoc with

a product line approach. Test B1 analyzes development approaches inclusive of survey re-

sponses with both system types, where test B3 excludes system type. We therefore observe

the embedded system type influences the relationship between product line and heritage
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ad/hoc development approaches. Secondly, relationships B3 3 and B2 3 are opposite. Re-

lationships B3 3 and B2 3 are complimentary, and therefore illustrate a contrast with B1 2.

We now proceed with an analysis of the final set of tests performed.

3.2.4.5 Test C, C1, C2, C3 Results

Our analysis of the next set of tests focuses on combinations of system type and out-

comes as shown in Table 3.11. Test C consists of survey responses with both system types

and outcomes. This test produces relationship C 1a and C 1b in which the outcomes of la-

bor savings, test time reduction and the number of items to be tested are associated together

as indicated in the survey responses. Specifically, more labor savings relates to a greater

reduction in test time and the number of items to be tested. This confirms what we strive for

in practice. Interestingly, however, we see in relationship C 2 that outcomes are not influ-

enced by reuse in non-embedded systems. Relationship C 3 indicates another confirmation

of desired behavior in which fewer defects reduce risk.

We analyze the results of test C1 where outcomes are included only for the embedded

system type. We see in relationships C1 1a and C1 1b an association between less labor

savings, less reduction in test time, and less reduction in the number of items to be tested.

Stated differently, for the embedded system type, if more items need to be tested there is

less reduction in test time and therefore less labor saved. Relationships C1 2 and C1 3 tell

us for embedded systems, when reuse does little to reduce defects or risk, this does not

correlate to any of the outcomes of defect reduction, a decrease in test time and the number

of items to be tested, and a reduction of risk.

In contrast to C1, test C2 addresses outcomes for the non-embedded system type only.

In relationship C1 1a and C1 1b we observe for non embedded systems, when fewer items

need to be tested, test time is reduced. This relationship is consistent with our expectations.

Similar to relationships C1 2 and C1 3, we see in C2 3 that labor savings is not influenced

by non-embedded systems. C2 3 shows us yet another difference between embedded and
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non-embedded systems. In this case we observe a relationship between defect reduction

and risk. With non-embedded systems, more defect reduction relates to more reduction in

risks. In contrast, risk reduction with embedded systems is not related to other outcomes.

Our final analysis looks at outcomes only. In test C3 there are three relationships. In

C31 we again see a relationship between a reduction in test time and fewer items to be

tested. We saw this relationship in test C2 for non-embedded systems and in test C for

both system types. In addition to confirming desired behavior, we conclude the benefits

of less test time with fewer items to be tested is evident irrespective of system type. Test

C3 also produces relationship C3 2, a disassociation between risk reduction and outcomes

as also seen in C1 3. With the exclusion of system type in test C3 and the limitation of

embedded system type only in test C1, we observe that system type may not influence risk

reduction. Finally, relationship C3 3 shows us a somewhat counterintuitive relationship

between the outcomes of greater labor savings with less defect reduction. Stated differently,

when outcomes are analyzed independently, the less defects are reduced the more labor

is saved. This is counterintuitive from the perspective of saving time and money in the

presence of more defects. However one could argue that there is a cost to reducing defects

and a cost avoidance when not spending effort on defect reduction. Perhaps some defects

may not be worth removing.

3.2.4.6 Summary of common relationships

In a different aspect of the analysis of our results, we inspect all PCA relationships in

terms of their frequency of occurrence and discuss those which appear in two or more tests.

We discuss these relationships next.

In Table 3.13 four relationships are common with three tests and eight are common with

two tests. Three relationships have tests A, A2 and A3 in common (architecture to tested

products, models to use cases, and requirements to architecture and tested products). These

are tests which analyze survey results for responses containing both system type, artifacts,
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and the non-embedded system type with artifacts. None of these three tests includes only the

embedded system type. This indicates differences between embedded and non-embedded

systems, with relationships between architecture, tested products and requirements, and

separately, between models and use cases. A fourth relationship in Table 3.13 is shared with

tests C, C2 and C3 (test time to items to be tested). These three tests address system type and

outcome but none includes only the embedded system type. Thus we also find a difference

between embedded and non-embedded systems in test C and C3 in terms of reduction in

test time and items to be tested. One relationship in Table 3.13 is shared among tests A

and A1 (code to drawings and hardware). These tests differ only in the restriction to the

embedded system type in A1. Since the relationship between code, drawings and hardware

appears in test A, which includes both system types, and in test A1, which includes only

the embedded system type, we conclude system type does not influence the relationship

between code, drawings and hardware. Similarly, there are two relationships that are each

common to tests A2 and A3 (drawings to hardware and code to drawings and hardware).

These two test differ only in the restriction to the non-embedded system type in A2. From

this we conclude that system type does not influence choices in drawings, hardware and

code as artifacts in reuse. Tests A and C1 share one relationship (labor savings to test time).

Since tests A and C1 are disjoint (test A includes system type and artifacts, and test C

includes only outcomes with the embedded system type), we cannot make any meaningful

conclusions about any factors that influence labor savings and test time from these tests.

Three relationships are shared among test B, B1, B2 and B3, which each address system

type and development approach. One relationship is shared by B and B1. B analyzes

system type with reuse approaches while B1 limits survey inputs to the embedded system

type along with reuse approaches. Since the relationship is found in test B, where both

system types are included, and in B1 where only the embedded system type is included,

we conclude that system type is not necessarily related to product line or COTS/GOTS

development approaches. Tests B2 and B3 differ in the restriction to the non-embedded
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system type in B2. From this we conclude system type is not necessarily associated with

the component based and model based development approaches. Tests C1 and C2 which

share one relationship (defect reduction to risk reduction) differ by the exclusion of the non-

embedded system type in C1 and the exclusion of the embedded system type in C2. Since

C1 and C2 differ by system type, we conclude the relationship between defect reduction

and risk reduction is independent of system type.

Table 3.13: PCA duplicate relationship summary

Relationship Tests
Greater reuse of architecture varies with more reuse of tested products A, A2, A3
Less reuse of models varies with less reuse of use cases A, A2, A3
Greater reuse of requirements varies with more reuse of architecture and
tested products

A, A2, A3

Greater reuse of code varies with less reuse of drawings and hardware A , A1
Greater reuse of drawings varies with more reuse of hardware A2, A3
Less reuse of code varies with more reuse of drawings and hardware A2, A3
A decrease in labor savings varies with less reduction in test time A, C1
Greater use of a product line based approach varies with less use
COTS/GOTS based approach

B, B1

Less use of a component based approach varies with less use of model
based approach

B2, B3

Less use of a COTS/GOTS based approach varies independently B2, B3
Greater reduction in test time varies with greater reduction in items to be
tested

C, C2, C3

Greater defect reduction varies with more risk reduction C1, C2

3.2.5 Lessons Learned and Conclusions

The tests in Table 3.11 are designed to discover relationships between system type,

development approach, artifacts selected for reuse, and outcomes. These tests map directly

to RQ2-1, RQ2-2, and RQ2-3. We summarize our PCA findings by listing the differences

between system type in terms of RQ1 (development approach), RQ2 (artifacts) and RQ3

(outcomes). We then discuss the similarities between system types, found through PCA. We

conclude with a summary of the findings between system types. The differences between

embedded and nonembedded systems found through PCA are:
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• With embedded systems, use of a product line approach goes hand in hand with the

heritage/ad hoc approach.

• With nonembedded systems, use of a product line approach avoids use of a her-

itage/ad hoc approach. This difference relates to RQ1.

• In our PCA, we did not discover differences between embedded and nonembedded

systems in terms of artifacts used. This relates to RQ2.

• With embedded systems, risk reduction is not related to any other outcomes.

• For nonembedded systems, risk reduction goes hand in hand with defect reduction.

This difference relates to RQ3.

The similarities between embedded and nonembedded systems discovered using PCA are:

• Use of component based, model based and COTS/GOTS development approaches do

not seem to be associated with either system type. This relates to RQ1.

• The selection of artifacts does not seem to be associated with system type. This

relates to RQ2.

• Labor savings, reduction in test time and reduction in the number of items to be tested

is evidently not associated with system type. This relates to RQ3.

The selection of PCA in the analysis of the survey response data is motivated by an

interest in relationships between survey responses which are not easily discovered through

conventional analytical methods. The results from PCA suggested that the selection of

embedded vs non-embedded system type does not influence outcomes such as an increase

or reduction in risk, or an increase or reduction in test time. These conclusions cautiously,

recognizing opportunities for future research in which a greater volume of survey data is

sought for a replicated study.
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PCA is used in Pilot studies 1 and 2 to demonstrate success with finding recommen-

dations for help desk improvements. PCA is a process which accounts for the statistical

variance between data. The data used in these pilot studies, help desk incidents, also in-

cludes a time component. For each incident submitted, the date and time of submission are

recorded. We can use this to our advantage by applying techniques which require a time

component, namely SRGMs. In pilot study 3 we turn to SRGMs to increase the scope of

research in help desk operations.

3.3 Pilot 3: Software Reliability Growth Models

3.3.1 Summary

In Pilot study 3, reliability models are incorporated into the research strategy for help

desk process improvements. Incident prediction is addressed as a step toward help desk op-

erational improvements. Reliability models are derived from historical incident data and are

used to predict incidents. In the case study conducted for Pilot study 3, software reliability

growth models (SRGMs) and their applicability to improvement processes are investigated.

A model selection process is proposed and evaluated. Its success is demonstrated using real

help desk incident data from eighteen desktop software applications. The results of the pilot

study show direct applicability to meeting cost challenges in IT help desk operations.

3.3.2 Purpose

Pilot study 3 compliments research related to help desk operational improvements by

fitting incident data to reliability models in order to predict future incidents. The purpose

of investigating reliability models and their applicability to help desk data is lies in the

business value of predicting help desk workload. Throughout this research we operation

on an assumption that incidents drive help desk costs through labor necessary to resolve

them. This assumption, along with the business value of incident prediction, is validated
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through discussions with help desk managers and through empirical evaluation of actual

incident data. The application of software reliability models has been investigated for the

purpose of defect prediction. Research conducted by Stringfellow and Andrews [105],

and replicated by Andersson [7] demonstrates success with a model selection process in

software development environments. Another purpose of Pilot study 3 is to evaluate the

model selection process for its applicability to IT help desk incidents.

3.3.3 Scope

This pilot study is scoped to an analysis of 18 desktop software products used in the

same organization studied in Pilot 1. Specifically, we selected the products from a much

larger set based on the number of computers on which the products are installed (i.e., their

distribution in the organization), and on the number of incidents associated with failure of

the products. The 18 products have similar distributions and incident volume and represent

typical products used by most employees in the organization.

3.3.4 Approach

We present a case study of IT help desk operations in a large multi-national aerospace

company. In our approach we investigate how software reliability growth models (SRGMs)

can be applied to cumulative help desk incidents for software product failures to predict

incident volume. Due to the diverse line of products and services offered by the company

in our case study, over 800 desktop products are installed on computers across a population

of approximately 100,000 employees. Almost all employees have a dedicated computer for

their use. There are over 1,000,000 unique software installations on the employee com-

puters. Some common products are installed company-wide and others are installed on a

limited number of machines used for a specific purpose such as high-end graphics. A single

enterprise help desk is accessible to all employees by several ways (web, telephone, chat)
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to report all types of failures and service requests related to IT. Because desktop product

reliability is of interest in this research, we limit the scope of our investigation to incident

types related to desktop software failures. We exclude incidents submitted for software re-

quests, password resets, resolution of hardware failures and general IT assistance. The data

used in this pilot study is described in Appendix B.

On a typical workday, hundreds of incidents are opened at the help desk in response to

reports of desktop software failures. Enterprise help desk management software is used to

control and document incident generation including mapping of incidents to products, the

assignment of date and time stamps when an incident is generated, updates when text is

added to record the status of troubleshooting efforts, and problem resolution. Each incident

contains a fixed number of attributes. A text or numerical field is associated with each

attribute. All incidents are maintained as historical records for post-resolution analysis,

root cause identification, trending and other aspects of data analytics. A query-based tool is

provided to administrative users to obtain lists of incidents which match selection criteria.

In our research we use this tool to obtain incidents written against a set of software products

of interest. The tool returns the list of incidents, each with the product against which the

incident was written and the date and time at which the incident was opened. In this case

study we count the accumulation of incidents on the basis of the date and time at which the

incident is submitted to the help desk, grouped by one week intervals. From this data we

are able to determine cumulative incident volume by product over a time period of interest.

From the initial set of 156 products selected according to the process described in

Appendix B, we chose incident datasets for failures associated with 18 desktop software

products shown in Table Table 3.14. Our motivation for product selection is based three

attributes explained below: 1) product distribution, 2) product incident volume, and 3) the

product’s distribution and incident volume relative to that of the most typical product in the

help desk database. Product distribution is measured in terms of how many active comput-

ers have the product installed. For example, a distribution of 6492 for product ID A39 as
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Table 3.14: Desktop software products

Product ID Distribution Tot Inc Duration (weeks)
A39 6492 1060 177
A56 6893 305 174
A123 8355 822 137
A165 6394 70 98
A206 5208 35 118
A219 4704 114 178
A228 7570 65 138
A255 5547 351 155
A310 5721 61 164
A373 7767 98 137
A417 4813 49 178
A450 5234 134 171
A459 8284 11 68
A466 6339 27 172
A488 6712 194 180
A495 4732 87 155
A501 5609 236 100
A514 4863 60 175

shown in Table 3.14 means A39 is installed on 6492 active computers in the company, and

has remained installed over a specified time period. The range of product distribution in the

help desk database is between 1 and 135,000. Incident volume is measured in terms of the

number of incidents submitted against the product over the specified time period. Product

A39 in Table 3.14 has 1060 incidents.

An incident is uniquely different from another through an alphanumeric identifier au-

tomatically assigned when the incident is generated. The range of incident volume in the

help desk database is between 1 and 19,500. In order to select a subset of products for

our case study, we looked for products with similar distributions and incident volumes, but

which are also close to those of the more typical products. A scatter plot of products based

on their distribution and incident volume is included in Figure B.1a in Appendix B. The

scatter plot shows most products are clustered in the range of less than 20,000 installations

and less than 2000 incidents. We define the product whose behavior is the most typical in
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terms of distribution and number of incidents as the product p0. In our analysis we select

p0 and the 17 closest products for a total of 18. We label the set of products against which

SRGMs are applied A as in Equation B.0.1 in Appendix B.

Managers of help desk operations are challenged with meeting customer affordability

constraints while delivering optimal IT service. Predicting costs must include not only

estimations of labor, but projections of the cost of building in product reliability [85]. Soft-

ware reliability growth models (SRGMs) can be used to predict product quality. Practical

applications of SRGMs are investigated by Stringfellow and Andrews [105] and by Ander-

sson [7] where a process for the selection of SRGMs is presented in the context of release

decisions. In this case study we investigate the generalizability of the Stringfellow et al.

approach through application to an IT help desk domain.

Equations and characteristics of the four SRGMs selected for investigation in this case

study are shown in Table 3.15. We select these four SRGMs based on our goal to evaluate

the generalizability of the research conducted by Stringfellow and Andrews [105] [7]. The

equation u(t) for each model expresses the expected number of incidents at time t. All

Table 3.15: SRGMs investigated

SRGM Equation u(t)

G-O [38] a(1− e−bt), a ≥ 0, b > 0

Delayed S-
shaped [133]

a(1− (1 + bt)e−bt), a ≥ 0, b > 0

Gompertz [65] a
(
bc

t
)
, a ≥ 0, 0 ≤ b ≤ 1, c > 0

Yamada [134] a

(
1− e−bc

(1−e(−dt))
)
, a ≥ 0, bc, d > 0

SRGMs applied in this case study have asymptotic behavior. Mathematically, this behavior

is expressed as a boundary condition u(∞) = a, where a is the theoretical maximum

number of incidents that would eventually be reached. In practice, the quantity of incidents
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Table 3.16: Prediction error at ten week prediction time frame for converging models not
rejected at R = 0.95

Prod
ID

Model Calc
rem

Actual Error Rel
Error

A39 D-S 924 895 29 0.032
A56 G-O 262 259 3 0.012
A123 D-S 575 569 6 0.011
A165 G-O 58 58 0 0.000
A206 G-O 25 27 -2 -0.074
A219 D-S 87 87 0 0.000
A255 Gom 339 343 -4 -0.012
A373 D-S 76 75 1 0.013
A417 G-O 35 38 -3 -0.079
A450 G-O 80 81 -1 -0.012
A466 G-O 21 21 0 0.000
A488 D-S 122 121 1 0.008

GOM 122 121 1 0.008

would approach this number given sufficient time over the life of the product. This behavior

is attributed to a decrease in the rate of incident submission as reported problems are fixed.

Note that it is possible that incident rates increase, due to product updates, infrastructure

changes, etc. What this means is that we may need to collect more incident data before we

can estimate (i.e. the model may not converge at this point).

We selected a commercially available curve fitting tool which uses non-linear regres-

sion to determine convergence (or non-convergence) of a set of discrete data points to a

function. The tool calculates a Goodness of Fit (GOF) measurement to express the degree

to which the data points fit the function. It produces numerical values for all parameters in

the models. The tool allows us to capture the GOF (R-value), a prediction of the number

of incidents for the next time period, and the value of the a parameter for each model, for

data points at which there is convergence. Recall the a parameter is an estimate of the total

number of incidents that would eventually be submitted. Tables 3.17, 3.18 and 3.19 show

the results of curve fitting for cumulative incident data in the final weeks for product IDs

A488, A39 and A459 respectively. For each of these products, preferred models can be
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Table 3.17: Predicted total number of incidents for product A488 (R=0.95)

Week Incidents G-0 Delayed S Gompertz (*) Yamada

Estimate R-value Estimate R-value Estimate R-value Estimate R-value

172 113 6656 0.9830 207 0.9953 175 0.9977 – –
173 114 6621 0.9832 207 0.9953 174 0.9978 – –
174 115 6591 0.9834 206 0.9954 173 0.9978 – –
175 115 6552 0.9837 206 0.9955 173 0.9978 – –
176 116 6518 0.9839 205 0.9955 172 0.9979 – –
177 117 6489 0.9841 205 0.9956 172 0.9979 – –
178 117 6451 0.9844 204 0.9957 171 0.9979 – –
179 117 6406 0.9846 204 0.9957 171 0.9979 – –
180 119 6378 0.9848 203 0.9958 170 0.9980 – –

identified on the basis of GOF (R-value) or by using additional restrictive thresholds (best

GOF, for example). These models are designated as Selected in Tables 3.17, 3.18. For prod-

uct ID A459 in Table 3.19, no model is selected since the R-values are mostly under the

0.95 threshold. Table 3.16 shows the calculated number of cumulative defects (Calc rem)

ten weeks into the future. This number is obtained through the function fw0(t) derived

by applying the models to the dataset consisting of the first 60% of cumulative incident

data collected from the 18 products listed in Table 3.14. We follow the approach taken by

Stringfellow and Andrews [105] in using the 60% cumulative data threshold. The (Actual)

column shows the actual number of cumulative defects known from our dataset at ten weeks

past w0. We calculate the prediction error and relative error by using (Calc rem) as the es-

timated number of incidents, and (Actual) as the actual number. We include in Table 3.16

the model which returns the lowest magnitude of relative error for each product ID. In the

case of A488, the relative error determined by two models was the same.

We discussed a selection method to be used in determining which SRGM is the best

predictor for incidents in the products we investigate. We propose the approach in Figure

3.5 which applies an analysis of three rejection criteria: 1) does the model converge, 2) is

the fit good enough, and 3) is the estimate greater than the actual. Our business decision
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Table 3.18: Predicted total number of incidents for product A39 (R=0.95)

Week Incidents G-0 Delayed S Gompertz (*) Yamada

Estimate R-value Estimate R-value Estimate R-value Estimate R-value

169 883 3911 0.9739 1056 0.9907 874 0.9968 – –
170 886 3729 0.9740 1055 0.9908 875 0.9968 – –
171 886 3563 0.9740 1053 0.9908 877 0.9968 – –
172 887 3413 0.9741 1052 0.9909 878 0.9968 – –
173 889 3278 0.9742 1051 0.9910 880 0.9968 – –
174 892 3158 0.9743 1049 0.9910 881 0.9968 – –
175 892 3047 0.9743 1048 0.9911 882 0.9968 – –
176 892 2943 0.9744 1046 0.9912 884 0.9968 – –
177 893 2848 0.9744 1045 0.9912 885 0.9968 – –

Table 3.19: Predicted total number of incidents for product A459 (R=0.95)

Week Incidents G-0 Delayed S Gompertz Yamada

Estimate R-value Estimate R-value Estimate R-value Estimate R-value

60 9 10 0.9239 7 0.8886 16 0.9250 15 0.9254
61 9 11 0.9257 7 0.8882 22 0.9290 17 0.9270
62 9 12 0.9280 7 0.8889 26 0.9329 18 0.9292
63 10 14 0.9286 7 0.9112 159 0.9361 21 0.9293
64 10 15 0.9299 8 0.8880 339 0.9402 25 0.9307
65 10 17 0.9322 8 0.8885 428 0.9440 28 0.9327
66 10 19 0.9348 9 0.8908 392 0.9473 32 0.9352
67 10 21 0.9375 9 0.8937 282 0.9502 36 0.9378
68 10 23 0.9401 9 0.8968 112 0.9527 39 0.9404
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Figure 3.5: Flowchart for approach

is made on the basis of relative error between predicted number of incidents and the actual

number. In our case, the threshold is defined by the model for which the lowest magnitude

of relative error is produced from the set of models which are not rejected through the

rejection criteria. We model our approach after Stringfellow and Andrews [105]. The

results of applying the model selection criteria in Figure 3.5 are shown in Tables 3.20 and

3.21. For R ≥ 0.95, the less restrictive GOF threshold, Table 3.20 shows the SRGMs most

appropriate for the applications listed, based on our approach and model rejection criteria.

We note the Gompertz model outperforms the Delayed S-shaped and G-O models in terms

of the number of applications for which we determine model suitability. Table 3.21 shows

the Gompertz model is the only favorable SRGM. The fewer number of applications in

Table 3.21 is explained through the more restrictive GOF. A threshold of 0.99 rejects more

curve fits than a threshold of 0.95.
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Table 3.20: Results of applying model selection approach using R = 0.95

Model Product ID
G-O A39, A206, A488
Delayed S-shaped A39, A56, A65, A219, A488
Gompertz A39, A123, A255, A373, A450, A466, A488
Yamada none

Table 3.21: Results of applying model selection approach using R = 0.99

Model Product ID
G-O none
Delayed S-shaped A39, A488
Gompertz A39, A123, A255, A373, A450, A488
Yamada none

 

Figure 3.6: SRGM prediction behavior as a function of prediction time frame for product
A123 using the Gompertz model
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In Table 3.16 we based our analysis on a ten week prediction time frame for all products

and all models for which there is convergence in the curve fit at a threshold of R = 0.95.

We selected the prediction time frame based on business practices when projecting staffing

levels at the help desk. Selecting a time frame too soon into the future would require

projections to be made more often than necessary. Projecting too far out adds risk in the

projections. While a ten week prediction time frame fits our current business practices,

we are interested in prediction performance of the models at time frames well beyond ten

weeks. We select an approach which investigates relative error of a model’s prediction as a

function of prediction time frame. In other words, how does prediction error behave across

a much larger time frame, instead of only the single ten week time frame influenced by

current business practices. Relative error shows how large the error is in relation to the

correct value, and can be positive, negative, or zero. A relative error with magnitude close

to zero indicates an incident volume prediction close to the actual number of incidents. A

view of the Gompertz model in Figure 3.6 shows an the best prediction time frame at ten

weeks or more is at week 147, where the magnitude of the relative error is the smallest. The

results in this process example suggest predictions from a ten week look-ahead for staffing

decisions cannot be improved through selection of a time frame greater than ten weeks.

In a business context, the confidence of staffing predictions based on model prediction

performance diminishes after the ten week interval. Space limitations preclude additional

plots for the other products we investigated.

We conclude our analysis by revisiting the research question Can an SRGM selection

approach be used to estimate IT help desk incidents? The results of our case study suggest

confidence in incident prediction performance with the Gompertz model. The G-O and De-

layed S-shaped models are promising, but to a slightly lesser degree than with the Gompertz

model using both GOF criteria. The Yamada model must be rejected for incident prediction

based on this case study. The G-O, Delayed S-shaped and Gompertz models show strength

in incident prediction on the basis of their ability to converge to our case study data sets,
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but respective of our tolerance for goodness of fit. As with an analysis of prediction ability,

the Yamada model did not show us sufficient performance with convergence to build confi-

dence in it as a tool for predicting desktop software quality. Our model selection approach

is shown to achieve our goal in selecting a suitable SRGM, reflective of the design of the

model and its criteria. We establish relative error as a decision threshold, but demonstrate

prediction time frames influence relative error in our selection process. In summary, our

approach and results lead us to methodologies which have potential for assisting with IT

help desk operations.

3.3.5 Lessons Learned and Conclusions

Four software reliability growth models are investigated in this Pilot study 3 for their

applicability to help desk incidents. In the literature we see applications of SRGMs to defect

data collected during software testing, often in the interest of evaluating post-release defect

prediction accuracy from historical defect data. Our case study is a departure from this

approach in that we focus on help desk incidents reported for the resolution of problems

with deployed software products. Our assumptions of using incident submission time as a

means by which cumulative incident data is collected is consistent with the use of calendar

time (vs. execution time) in related studies of SRGMs. Our results demonstrate three out of

four reliability models show usefulness in terms of their goodness of curve fit to cumulative

help desk data for desktop product software failures. Additionally, we demonstrate success

with a model selection framework which assists us with determining a suitable model on the

basis of incident prediction error. These results and conclusions are portable to IT help desk

operations. Investigation into additional products and product families will likely broaden

our outlook on the applicability of these results to IT operations.
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3.4 Pilot 4: PCA and SRGMs with Extended Product Set

3.4.1 Summary

In this last of four pilot studies we investigate software reliability models and their

applicability to process improvement at an IT help desk, using an extended product set.

In Pilot studies 1 and 3 a small number of products was investigated for the purpose of

finding process improvements with incident data (Pilot 1) and predicting incidents (Pilot

3). In Pilot study 4, an extended SRGM selection framework built on the selection process

described in Pilot 3 is evaluated using real help desk incident data from a portfolio of 156

desktop software applications. Through the use of a much larger set of products, we show

success with the scalability of techniques used in Pilots 1 and 3. Help desk incidents are

predicted for the portfolio at five prediction intervals and measured against actual numbers

of submitted incidents. Incident prediction accuracy is analyzed, and the trend in accuracy

based how far into the future incidents are predicted is evaluated. The results demonstrate

a model selection framework can assist with predicting the number of incidents that will be

submitted to a help desk for a large portfolio of products. The level of accuracy reported in

this industry-based case study establishes the proposed estimation technique and reliability

model selection framework as novel research in software engineering. Additionally, its

practical uses are applicable to help desk process improvement efforts.

3.4.2 Purpose

Pilot study 4 compliments the research strategy of this thesis by demonstrating inci-

dent prediction accuracy with a large product portfolio. Successful demonstration of this

approach establishes the first of three incident prediction techniques, two of which are pre-

sented later in the Large Scale Approach section of this thesis. Discussions with help desk

managers at the company in which Pilot studies 1, 3 and 4 are conducted indicate opera-

82



www.manaraa.com

tions are typically managed and executed at a system level rather than at a product level.

The help desk provides incident resolution services for a portfolio of products. This estab-

lishes motivation to validate incident prediction techniques to a larger set of products than

what was selected for the previous pilot studies.

3.4.3 Scope

Pilot study 4 investigates help desk incident predictions in the same organization used

with Pilots 1 and 3. Pilot 4 applies the same techniques, but uses incident data from a much

larger number of desktop software applications. Rather than selecting a subset of products

that are typically used by most employees as was done in Pilot 3, we identify products with

a minimum of 50 installations on computers in the company, and a minimum of 50 incidents

generated. By applying these thresholds, we identify 156 products from which we gather

incident data for analysis.

3.4.4 Approach

Cumulative incident data for each of the 156 products selected according to the process

described in Appendix B was obtained from the help desk database. The incident data for

each product begins with incidents from April 2008 and goes through a specified month

between January 2012 and October 2013. For example, the first dataset for product A1

consists of cumulative incident data from April 2008 through January 2012. The second

dataset for A1 goes from April 2008 through February 2012, and so on. This approach

results in 22 datasets for each of the 156 products.

In addition to the actual cumulative monthly incident data for April 2008 through Jan-

uary 2012, we collected incident data for time intervals after January 2012 to use in our

validations. We collected the total number of incidents produced by all 156 products in the

months of February 2012 through March 2014 for this purpose. Knowing actual incidents
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for these months allows us to measure prediction accuracy from incident estimates in prior

months as part of the validation step.

The process used in this case study predicts incidents by curve fitting help desk incident

data to SRGMs. As stated earlier, incident volume drives help desk costs, so a prediction of

incidents can help managers make operational decisions. Managers of help desk operations

are challenged with meeting customer affordability constraints while delivering optimal IT

service. Similar to pilot study 3, practical applications of SRGMs are investigated in this

pilot study where a process for the selection of SRGMs is modeled after research conducted

by Stringfellow and Andrews [105] and by Andersson [7]. In this pilot study we investigate

the generalizability of the Stringfellow et al. approach through application to an IT help

desk domain.

Equations and characteristics of the four SRGMs selected for investigation in this pilot

study are the same as in pilot study 3, and are shown in Table 3.15. Figure 3.7 shows the

incident prediction process used in this case study. We model this process after Stringfel-

low and Andrews [105]. The steps begin with gathering cumulative incident data for each

product through the end of a specified time period, for example through the end of January

2012. The incident data is curve fit to each SRGM, one product at a time. Model parameters

are recorded for each SRGM that converges for the product incident data. Models which do

not converge are rejected for analysis for the remaining time period. A goodness of curve

fit R2 is reported for each model that converges. The model with an R2 value closest to

1.0 is selected as the best model for the incident data. Using the model parameters for the

best SRGM, incidents are predicted for the next time period t according to the applicable

equation in Table 3.15. Additionally, the remaining number of incidents is calculated from

the difference between the total number of incidents and the number of incidents produced

at time t. Recall, the total number of incidents is the value of the a parameter in the SRGM

equations in Table 3.15. After predicting the remaining incidents for the product, the inci-

dent prediction process shown in Figure 3.7 is repeated using data for the same time period
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Figure 3.7: Incident prediction process flowchart

(through January 2012 in this example) but for the next product. The steps in the flowchart

are followed for each product. At each iteration, all SRGMs in Table 3.15 are evaluated.

When the process steps are complete for all products for the current time period, incident

data is collected for all products through the next time period (February 2012). The steps

are then repeated for all 156 products for the remaining time periods through October 2013.
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Figure 3.8: Determination of remaining incidents from model plot

Overall, 20,592 curve fits are attempted. For each curve fit, the model with the best

SRGM is selected to predict incidents for that product. We designate that model as u′(t)

and derive equations for incidents estimations and relative error.

Let u′i(t) be the curve-fitted model for application Ai (i = 1 : 156) in product set A.

Then NAi(t), the estimated number of incidents that will be generated by Ai through

time period t ≥ 0, is given by

NAi(t) = u′i(t) (3.4.1)

The estimated total number of incidents NA(t) to be generated by all 156 applications

through t is given by

NA(t) =
156∑
i=1

NAi(t) (3.4.2)

Let Nact(t) be the known number of incidents that are actually produced by all 156 appli-

cations in product set A, through t.

Then REA(t), the incident prediction relative error at t for all products is given by

REA(t) = (NA(t)−Nact(t))/Nact(t) (3.4.3)

Using Equation 3.4.3, incident prediction error is calculated from predictions at 1 month, 2

months, 3 months, 4 months and 5 months beyond the last month in each time period.
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Table 3.22: Incident prediction relative error at five prediction intervals, R2 ≥ 0.95

Act. inc Predicted incidents (cumulative) Relative error REA(t)
(cumulative) +1 mo +2 mo +3 mo +4 mo +5 mo +1 mo +2 mo +3 mo +4 mo +5 mo

1/31/2012 62572 67595 68754 69881 70982 72059 0.0539 0.0513 0.0483 0.0469 0.0460
2/28/2012 64135 68876 70047 71186 72298 73387 0.0532 0.0508 0.0499 0.0495 0.0478
3/31/2012 65397 70417 72785 75769 78404 80424 0.0563 0.0735 0.0999 0.1194 0.1297
4/30/2012 66661 71661 72903 74154 75438 76787 0.0569 0.0583 0.0587 0.0596 0.0646
5/31/2012 67804 72960 74224 75497 76793 78127 0.0591 0.0597 0.0605 0.0647 0.0672
6/30/2012 68888 74114 75319 76502 77663 78804 0.0581 0.0580 0.0607 0.0609 0.0628
7/31/2012 70042 75335 76492 77626 78739 79832 0.0582 0.0605 0.0604 0.0619 0.0661
8/31/2012 71192 76435 77585 78712 79820 80910 0.0597 0.0598 0.0615 0.0660 0.0611
9/30/2012 72127 77491 78637 79779 80932 82121 0.0585 0.0605 0.0654 0.0614 0.0529

10/31/2012 73207 78615 79727 80815 81883 82934 0.0602 0.0647 0.0599 0.0498 0.0412
11/30/2012 74149 79562 80660 81739 82802 83850 0.0625 0.0578 0.0480 0.0396 0.0313
12/31/2012 74880 80490 81633 82779 83935 85109 0.0556 0.0466 0.0393 0.0324 0.0259
1/31/2013 76249 82016 83195 84476 85926 87628 0.0516 0.0445 0.0390 0.0358 0.0406
2/28/2013 77995 83290 84906 86747 88849 91251 0.0457 0.0443 0.0457 0.0551 0.0663
3/31/2013 79650 84619 86204 87946 89878 92035 0.0408 0.0392 0.0444 0.0502 0.0617
4/30/2013 81304 84890 86118 87400 88752 90189 0.0233 0.0227 0.0213 0.0238 0.0288
5/31/2013 82956 89206 90979 92852 94847 96982 0.0593 0.0631 0.0711 0.0819 0.0924
6/30/2013 84210 90923 92662 94459 96321 98253 0.0624 0.0689 0.0775 0.0849 0.0928
7/31/2013 85579 92894 94756 96681 98674 100737 0.0716 0.0808 0.0890 0.0975 0.1051
8/31/2013 86685 93460 95004 96543 98077 99605 0.0661 0.0701 0.0738 0.0759 0.0779
9/30/2013 87668 93473 94834 96186 97531 98868 0.0528 0.0548 0.0552 0.0555 0.0557

10/31/2013 88781 96081 97493 98880 100240 101573 0.0687 0.0695 0.0701 0.0703 0.0703
11/30/2013 89908 - - - - - - - - - -
12/31/2013 91157 - - - - - - - - - -
1/31/2014 92405 - - - - - - - - - -
2/28/2014 93654 - - - - - - - - - -
3/31/2014 94902 - - - - - - - - - -

3.4.5 Lessons Learned and Conclusions

We selected a commercially available curve fitting tool which uses non-linear regression

to determine convergence (or non-convergence) of a set of discrete data points to a function.

In our case the data points are integer values which represent the cumulative number of

incidents at each time interval, for a specific product. The tool produces numerical values

for all parameters in the models, for models that converge. The tool determines the GOF

(R2 value), and the value of the a parameter for each model as shown in Table 3.15. Recall

the a parameter is an estimate of the total number of incidents that would eventually be

submitted. The tool also allows us to evaluate the model at future time periods.

We apply the model selection method shown in Figure 3.7 to estimate the values for

model parameters. We determine which SRGM has the best curve fit for the current incident

data set. This model selection process results in a function u′(t) (Equation 3.4.1) for the

selected model, including numerical values for the model parameters of u′(t).

Tables 3.22 and 3.23 show the predicted cumulative number of incidents one, two, three,

four and five months (labeled as “+1 mo”, “+2 mo”, etc.) from the date in the leftmost
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Table 3.23: Incident prediction relative error at five prediction intervals, R2 ≥ 0.99

Act. inc Predicted incidents (cumulative) Relative error REA(t)
(cumulative) +1 mo +2 mo +3 mo +4 mo +5 mo +1 mo +2 mo +3 mo +4 mo +5 mo

1/31/2012 62572 65650 66770 67861 68925 69966 0.0236 0.0210 0.0180 0.0165 0.0157
2/28/2012 64135 66783 67895 68975 70027 71054 0.0212 0.0185 0.0173 0.0165 0.0144
3/31/2012 65397 68231 69366 70477 71567 72639 0.0236 0.0230 0.0231 0.0218 0.0203
4/30/2012 66661 68964 70084 71179 72253 73305 0.0171 0.0174 0.0162 0.0149 0.0163
5/31/2012 67804 70012 71198 72391 73604 74853 0.0163 0.0165 0.0168 0.0205 0.0225
6/30/2012 68888 70976 72087 73172 74232 75268 0.0133 0.0126 0.0145 0.0140 0.0151
7/31/2012 70042 73039 74127 75188 76225 77239 0.0259 0.0277 0.0271 0.0280 0.0315
8/31/2012 71192 74192 75290 76365 77418 78451 0.0286 0.0285 0.0299 0.0339 0.0289
9/30/2012 72127 75155 76229 77280 78311 79323 0.0266 0.0280 0.0321 0.0270 0.0170

10/31/2012 73207 75883 76909 77907 78880 79831 0.0234 0.0271 0.0217 0.0113 0.0023
11/30/2012 74149 76971 77991 78989 79969 80932 0.0279 0.0228 0.0127 0.0040 -0.0046
12/31/2012 74880 77653 78643 79612 80562 81493 0.0184 0.0083 -0.0005 -0.0091 -0.0176
1/31/2013 76249 78886 79784 80663 81525 82369 0.0114 0.0017 -0.0079 -0.0173 -0.0219
2/28/2013 77995 79009 79876 80735 81586 82429 -0.0080 -0.0176 -0.0268 -0.0312 -0.0368
3/31/2013 79650 81017 82313 83715 85251 86947 -0.0035 -0.0078 -0.0059 -0.0038 0.0030
4/30/2013 81304 81900 82796 83675 84541 85398 -0.0127 -0.0168 -0.0223 -0.0247 -0.0259
5/31/2013 82956 84866 86138 87445 88803 90226 0.0078 0.0065 0.0088 0.0129 0.0163
6/30/2013 84210 85684 86810 87927 89040 90152 0.0012 0.0014 0.0030 0.0029 0.0027
7/31/2013 85579 87473 88768 90082 91422 92793 0.0091 0.0125 0.0147 0.0168 0.0179
8/31/2013 86685 88295 89471 90639 91802 92960 0.0071 0.0078 0.0081 0.0071 0.0060
9/30/2013 87668 88344 89369 90381 91383 92377 -0.0049 -0.0060 -0.0085 -0.0111 -0.0136

10/31/2013 88781 90951 92092 93209 94305 95379 0.0116 0.0103 0.0087 0.0070 0.0050
11/30/2013 89908 - - - - - - - - - -
12/31/2013 91157 - - - - - - - - - -
1/31/2014 92405 - - - - - - - - - -
2/28/2014 93654 - - - - - - - - - -
3/31/2014 94902 - - - - - - - - - -

Table 3.24: Incident prediction relative error summary for five prediction intervals

+1 month +2 month +3 month
1st Q med 3rd Q 1st Q med 3rd Q 1st Q med 3rd Q

R2 >= 0.95 0.0534 0.0582 0.0601 0.0509 0.0590 0.0643 0.0481 0.0602 0.0689
R2 >= 0.99 0.0073 0.0148 0.0236 0.0029 0.0126 0.0224 0.0004 0.0136 0.0178

+4 month +5 month
1st Q med 3rd Q 1st Q med 3rd Q

R2 >= 0.95 0.0496 0.0603 0.0692 0.0465 0.0623 0.0695
R2 >= 0.99 -0.0021 0.0121 0.0167 -0.0029 0.0102 0.0168

column of the tables. Equation 3.4.2 was used to determine the predictions. The predictions

are calculated from curve fits with R2 ≥ 0.95 in Table 3.22 and from curve fits with R2 ≥

0.99 in Table 3.23. The predictions in both tables are calculated using SRGMs with the

best curve fit, by following the process shown in Figure 3.7. Additionally, Tables 3.22

and 3.23 include the actual known (cumulative) number of incidents produced by all 156

products each month. Note that no incident predictions are made from curve fits later than

10/2013. The last five rows in the tables are included only to show the actual incidents for

the five months past the last month for which we have cumulative incident data (10/2013).

The actual number of incidents and the predicted incidents are used in Equation 3.4.3 to
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Figure 3.9: Incident prediction relative error at five prediction intervals

calculate incident prediction relative error. The five columns on the right side of Tables 3.22

and 3.23 show the relative error for the one, two, three, four and five month predictions. Box

plots showing a visual summary of the relative prediction error in Tables 3.22 and 3.23 are

included in Figure 3.9. A numerical summary of incident prediction relative error associated

with Figure 3.9 is included in Table 3.24.

We turn our attention to a discussion of the results of this case study through an in-

terpretation of incident prediction accuracy, with a focus on differences in prediction ac-

curacy between the two R2 thresholds. We discuss 1) median prediction relative error, 2)

interquartile range (IQR) of prediction error, 3) trends in median prediction relative as pre-
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diction periods increase, and 4) trends in IQR as prediction periods increase. The observed

differences for R2 thresholds of 0.95 and 0.99 are summarized in Table 3.25. Our motiva-

tion for selecting these measurements is as follows. Median prediction relative error allows

us to see the mid-point in the overall range of relative error, as an indicator of the central

tendency of incident prediction error. IQR exposes the spread of prediction error, and is an

indicator of prediction stability. Trends in median prediction error and IQR tell us how ac-

curate and stable our incident predictions are for short-term (one month) and long-term (five

month) predictions. These prediction time frames are typical of what is used in practice by

managers interviewed during this case study.

Starting with median prediction accuracy, we see in Table 3.24 that for R2 ≥ 0.95,

the median incident prediction error closest to zero (i.e., the most accurate estimate) occurs

when predicting incidents one month out. The highest (least accurate) occurs when predict-

ing five months out. This means at the one month prediction interval for R2 ≥ 0.95, 50%

of the predictions overestimated incidents by at least 5.82%. The other 50% overestimated

incidents by at most 5.82%. At the five month prediction interval for R2 ≥ 0.95, 50%

of the predictions overestimated incidents by at least 6.32% while the other 50% overes-

timated incidents by at most 6.32%. Continuing with observations of median prediction

accuracy, we turn to predictions limited to curve fits with the more restrictive GOF thresh-

old of R2 ≥ 0.99. Here we observe the median incident prediction error closest to zero

(i.e., the most accurate) occurs when predicting incidents five month out and the highest

(least accurate) occurs when predicting only one month out. This is opposite of the median

prediction accuracy trend at the less restrictive GOF threshold of R2 ≥ 0.95. This seems

counterintuitive and is discussed below. We note that median prediction accuracy for all

five prediction intervals is better at R2 ≥ 0.99, compared to R2 ≥ 0.95. For R2 ≥ 0.99,

50% of the predictions overestimated incidents by at least 1.48% for one month predictions,

and the other 50% overestimated incidents by at most 1.48%. At the five month prediction

interval for R2 ≥ 0.99, 50% of the predictions overestimated incidents by as little as 1.02%
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while the other half overestimated by at most 1.02%. The results from this case study in-

dicate the more restrictive GOF threshold results in more accurate incident predictions in

terms of median prediction accuracy for all five prediction periods, compared to the less

restrictive GOF threshold. IQR is interpreted as an indicator of incident prediction stability.

Table 3.25: Median incident prediction accuracy and interquartile range (IQR)

R2 ≥ 0.95 R2 ≥ 0.99

Median prediction best +1 month +5 month
accuracy worst +5 months +1months

IQR smallest +1 month +1 month
largest +5 months +5 months

The smaller the IQR, the more stable the predictions are. Table 3.24 indicates the smallest

IQR (most stable range of predictions) occurs at the one month prediction interval and the

largest IQR (least stable predictions) occurs at the five month interval, for both R2 ≥ 0.95

and R2 ≥ 0.99. These findings confirm a general intuition that prediction accuracy varies

more widely the farther out the predictions are made. With median prediction accuracy,

similar intuition is confirmed through better accuracy at one month predictions and worse

at five month predictions at R2 ≥ 0.95. However, achieving slightly better accuracy at

longer prediction periods for R2 ≥ 0.99 seems counterintuitive. Although one might be

inclined to infer from these results that better prediction is achieved at longer prediction in-

tervals for R2 ≥ 0.99, two additional observations are made. First, the difference in median

prediction error between one and five months at R2 ≥ 0.99 is 0.46%. (For comparison, the

difference in median prediction error between one and five months at R2 ≥ 0.95 is 0.41%).

These differences in prediction error translate to only a few hundred incidents compared to

cumulative incident volumes in the range of 63,000 to 95,000 as shown in Tables 3.22 and

3.23. Secondly, the IQR at five months is approximately twice as large as the one month

IQR. This indicates less stability in incident prediction accuracy at five months, compared

to stability with one month predictions. Through a combination of prediction stability and

accuracy, we are inclined to favor shorter incident predictions at both GOF thresholds, and
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suggest that appropriate caution is taken with assumptions of similar accuracy for longer

predictions.
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4 Large Scale Approach

4.1 Summary

Pilot studies 1 through 4 established a foundation for several analytical approaches,

the development of incident prediction techniques, and validation of a help desk cost es-

timation model. Having established success with 1) help desk process improvements and

incident prediction based on PCA and SRGMs, 2) generalizability to survey data, and 3) a

demonstration of the scalability of the approach to a large set of products, an aggregation

of the techniques is applied in a large scale approach in the next section. In this approach,

incidents predictions are related to help desk costs through the development and validation

of a cost model. A combined use of the techniques successfully demonstrated at a smaller

scale in the pilot studies is shown to predict incidents and help desk costs accurately. Ad-

ditionally, process efficiency is demonstrated through applying the techniques to clusters of

products rather than to all products in the large scale approach.

Help Desk operations at a large company can be expensive. Software down time causes

revenue loss [103]. Costs associated with IT operations present challenges to profit goals.

Minimizing software failures in an operational environment is important to customer ex-

perience, but more practically to the cost model for offering IT services. Two costs are

associated with software failures. First, short-term losses are realized through missed com-

mitments in daily business rhythms when software resources become nonfunctional or in-

accessible to employees. Longer term effects are unmet contractual obligations which can

lead to financial penalties or contract loss. Secondly, there are costs associated with the
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effort to resolve problems by help desk technicians and to manage resolution processes by

help desk managers. Workloads at the help desk are dynamic. There is a need for efficient

resolution to minimize employee wait time for help desk personnel to begin to work on

problems. Employing a sufficiently large team of help desk technicians to handle surges in

problems addresses the demand but results in idle staff during periods of nominal help desk

operations. Excess staff results in unnecessary costs when there is no backlog of problems

to resolve. Conversely, employing too few technicians results in delays with problem reso-

lution due to backlogs. This drives the cost of unproductive employees while problems are

being resolved. It would thus be helpful to find a way to predict incidents and the cost to

resolve them. Help desk managers need a way to plan staffing levels so that labor costs are

minimized while problems are resolved efficiently. An incident prediction method would be

useful to help desk managers for planning staffing levels. The potential value of a solution

to this problem is important to an IT service provider since software failures are inevitable

and their timing is difficult to predict. In addition to assisting with labor predictions for

existing operations, a cost prediction model would be a valuable tool in the preparation of

bids for additional business through demonstration of management efficiency by presenting

evidence of historically accurate labor predictions.

This large scale approach presents a cost model that is derived from incident reports and

labor data from a large help desk operation in an industrial setting. The approach uses real

help desk incident data and actual labor costs collected over a four and a half year period.

A cost model derived from a database of resolved incidents submitted against the full scope

of problem types encountered by the help desk in presented in this case study. Through

the development and validation of these techniques, the following research questions are

addressed:

• RQ1 Can desktop software product reliability data obtained from help desk incidents

be used to predict future incident volume?
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• RQ2 Can incident prediction accuracy be obtained through the selection of product

clusters vs. analyzing a full product portfolio in a prediction model?

• RQ3 Can incident resolution labor data be used to develop a help desk cost prediction

model?

4.2 Purpose

The goal of the large scale approach is to develop and validate a model to predict inci-

dents and cost (in terms of effort) for help desk operations. An objective in the development

of the cost model is to determine clusters of products which produce incidents, and to inves-

tigate whether or not a representative product in each cluster can be used to predict future

incidents for all cluster members rather than working with a larger set of products. The

large scale approach aggregates techniques from the pilot studies into one case study. By

showing success with the large scale approach, we are demonstrating the applicability of

the overall approach to actual help desk operations.

4.3 Scope

Like the pilot studies, the large scale approach is a case study conducted in an industrial

setting. The large scale approach uses data from the same help desk in pilots 1, 3 and 4,

and uses the same 156 products included in pilot 4. The scope of research in the large scale

approach is increased to include cost predictions for help desk operations. Additionally,

two additional incident prediction methods are introduced in order to compare results from

the prediction method used in pilot 4. An overview of help desk operations is included. The

data used in the case study is described. The large scale approach is included along with

results and conclusions.
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4.4 Case Study

4.4.1 Help Desk Operations

Help desk operations in the context of this pilot study are explained in Appendix A.

4.4.2 Data

In addition to the incident data described in Appendix B, we also obtained actual

monthly labor figures for effort in resolving help desk incidents. The labor figures have

been validated by help desk managers to ensure their accurate interpretation. Effort is

measured as the number of hours recorded by help desk technicians responsible for the

resolution of incidents submitted for desktop software products, hardware issues, operating

system errors and products outside the scope of this research. We are concerned with the

amount of labor associated with the resolution of incidents for the products we use in our

cluster analysis. Because monthly labor figures account for resolution effort for all types of

incidents, we need a way to extract the portion of labor that represents effort only for the in-

cidents submitted for the 156 clustered products. An attempt to obtain reasonable estimates

of the applicable portion through interviewing help desk managers was not successful.

The data used for this case study fall into two categories defined by Runeson, et. al.

[93]. Knowledge of help desk operations in the industrial setting of this case study is ob-

tained by direct methods through semi-structured interviews with two help desk managers.

Data obtained by this method compliments the experienced-based knowledge of help desk

data analysis by one of the authors of this paper. A second category of data, one in which

the majority of the quantitative data in this case study falls, is obtained through the inspec-

tion of archival data in the help desk database of incident records. The quantitative data is

collected and maintained by the help desk for the analysis of performance with respect to

established service metrics and for trend analyses from which business decisions are made.
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We use incident data in two ways. First, we develop an incident volume prediction

model using actual incidents resolved by the help desk as described later in our approach.

Secondly, we validate the incident prediction process by measuring the accuracy of incident

volume prediction compared to the actual number of incidents generated by a set of products

over a selected time period.

In this case study we also use help desk cost data in two ways. First, historical cost data

is used with incident volume to develop a cost prediction model based on predicted incident

volume. Our cost model development will be discussed later in our approach. Secondly, we

use actual cost data to validate the accuracy of our cost prediction model. The cost data we

collected is in units of hours per calendar month. The data are the collective number of hours

for all help desk technicians and managers who spent effort on resolving all incidents for the

given month. The actual number of incidents is known as well as the product for which each

incident is submitted. Although the numbers represent efforts toward incident resolution,

we are careful to note that they include effort for all product-based help desk incidents,

inclusive of the 156 products in our case study. The ideal scenario of accounting for labor

by product would have greatly assisted our research, but the labor was not accounted for

to that level of granularity. The 156 products in this case study is a subset of the overall

portfolio of products managed by the help desk. Similarly, the aggregate labor hours each

month represents effort spent resolving incidents from products in the overall portfolio. The

two entities are related through the identification of a specific product in each incident. This

allows us to determine the number of incidents each month that are submitted against the

156 products in our case study and for the balance of the portfolio. Actual labor costs for

the effort described above were obtained from help desk managers. We collected monthly

labor hours for each month over the time interval of interest in this case study. The labor

data is shown in Table 4.1.
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Table 4.1: Monthly labor hours for products selected in case study

Month Hours Month Hours Month Hours
- - 01/2010 768 01/2012 719
- - 02/2010 797 02/2012 924
- - 03/2010 820 03/2012 782
04/2008 925 04/2010 780 04/2012 742
05/2008 736 05/2010 777 05/2012 686
06/2008 771 06/2010 808 06/2012 615
07/2008 865 07/2010 957 07/2012 724
08/2008 719 08/2010 884 08/2012 690
09/2008 829 09/2010 839 09/2012 562
10/2008 876 10/2010 880 10/2012 646
11/2008 728 11/2010 785 11/2012 595
12/2008 616 12/2010 618 12/2012 455
01/2009 822 01/2011 1008 01/2013 810
02/2009 803 02/2011 796 02/2013 965
03/2009 1083 03/2011 849 03/2013 1015
04/2009 901 04/2011 786 04/2013 854
05/2009 821 05/2011 723 05/2013 854
06/2009 903 06/2011 832 06/2013 755
07/2009 854 07/2011 766 07/2013 788
08/2009 933 08/2011 874 08/2013 660
09/2009 782 09/2011 726 09/2013 629
10/2009 868 10/2011 681 10/2013 713
11/2009 859 11/2011 724 - -
12/2009 669 12/2011 563 - -
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4.5 Approach

By integrating actual cost data with incident history for a selected set of desktop prod-

ucts, we present an approach by which incident resolution cost is predicted. Figure 4.1

describes the main steps in our approach.

Our approach uses two major phases:

• incident estimation

• cost estimation

Since incident estimation for hundreds of products is expensive, we use cluster analysis to

group similarly behaving products in clusters, for which we then estimate incidents based

on the representative product in the cluster. We determine this representative product via

PCA. We use these representative products to estimate the total number of incidents for

all selected products using software reliability growth models. In Phase 2 we use incident

estimates and cost data to estimate expected labor cost for these expected incidents. Finally,

we validate our approach on the data available through our case study.

For problem resolution of software products in their operational life cycle, incident

records related to malfunctioning software reflect product reliability. A view of incident

records over time exposes a reliability trend. Knowing how many remaining incidents

to expect assists in quantifying information related to product quality, loss of employee

productivity associated with product failures, and projected levels of help desk staffing to

prepare for problem resolution.

4.5.1 Cluster Analysis

A goal of this step is to avoid having to estimate incidents for 156 products selected in

section 4.4. We use cluster analysis to group products based on incident behavior (attributes
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Figure 4.1: Process Flow: product selection through process validation
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in Table A.1). This is essentially a data reduction or variable reduction technique using

pattern recognition [63] [57].

Cluster analysis is a method use to separate a data set into the most similar data in

the same cluster and most dissimilar data in different clusters. We apply an agglomerative

hierarchical cluster analysis method [124] to group products together. Briefly, agglom-

erative cluster analysis assigns each data point to a unique cluster, and then merges data

points into clusters such that the distance between the points in each cluster is minimized

and the distance between the clusters is maximized. The technique returns a tree structure

(dendrogram) in which clusters are related hierarchically. This allows us to select cluster

sizes small enough to remain confident of behavior similarity among cluster members (and

dissimilarity between clusters) while meeting the goal of data reduction.

A vector of seventeen attributes of Table A.1 for each of the 156 products is input to

the cluster analysis. We used the R statistical tool hclust package. It includes a utility to

plot the hierarchical relationship between clusters as a dendrogram. Clusters with relatively

small distances between heights in the dendrogram are more similar to one another than

those whose height differences are greater. Since we clustered products on the basis of their

centroids, products in clusters with smaller differences in height behave more similarly in

terms of their incident attributes. The dendrogram produced from the cluster analysis is

shown in Figure 4.2. Rather than deciding on clusters by specifying a height in Figure

4.2, we were constrained by the limitations in our linear regression tool to no more than

16 clusters. We also wanted to have a manageable number of products per cluster. An

analysis of the dendrogram with these constraints in mind resulted in 11 clusters. While

this may be less than ideal from a theoretical perspective, it nevertheless resulted in high

quality incident estimation, as shown later. All 156 product are accounted for in the eleven

clusters. Table 4.2 shows the eleven clusters. Column 1 shows the cluster ID, column 2

shows the products in each cluster.1

1In Table 4.2 the numbers in parenthesis may be ignored at this time as they will be discussed later.

101



www.manaraa.com

 

Figure 4.2: Dendrogram from cluster analysis showing all products

4.5.1.1 Representative Product per Cluster

One of the motivations for clustering was to try to determine a representative product in

each cluster, so we need only predict future incidents for one product in each cluster rather

than for all. The representative product must behave similarly to the other products in its

cluster in terms of incident behavior. The behavior of an incident is observed through its

attributes shown in Table A.1. We use PCA to determine product similarity. PCA shows

us the amount of variance between attributes from a set of incidents for each product in

a cluster. We can see how the attributes relate to one another within a product through

inspections of the resulting principal components. For example, if attributes A1 (incident

urgency) and A2 (incident impact) show strong covariance in the principal components

from three products, we conclude those three products have similar behavior on the basis of

the impact and urgency. By discovering the attribute relationships in each of the products

within a cluster, we can rank the products according to their similarity based on the number

of attribute relationships that are common between the cluster members. Products with

higher numbers of relationships common with other cluster members get ranked higher.
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Table 4.2: Cluster product scores based on number of shared and unique principal compo-
nents within cluster

Cluster
Cluster members (raw similarity score)

Selected
ID product
BV A421 (19), A284 (26), A287 (23), A155 (13), A116 (8), A383 (28),

A387 (23), A5 (12), A81 (23), A347 (16), A44 (29), A235 (20)
A44

EW A501 (29), A531 (25), A394 (22), A427 (25), A145 (47), A372 (66),
A146 (24), A334 (61), A6 (41), A13 (32), A497 (53), A171 (64), A249
(71), A21 (63), A393 (23), A75 (48), A359 (28)

A249

EG A179 (27), A467 (34), A90 (11), A499 (8), A172 (16), A39 (18), A333
(47), A487 (40), A14 (32), A255 (28), A232 (13), A236 (46), A511
(52), A517 (45)

A511

ER A248 (84), A375 (30), A101 (109), A295 (53), A327 (53), A532 (53),
A514 (27), A391 (64), A468 (123), A151 (45), A439 (107), A246 (85),
A300 (90), A329 (108), A413 (115), A200 (26), A239 (55), A510
(119), A450 (89), A502 (111), A245 (77), A267 (107), A282 (118),
A436 (46), A20 (75), A310 (96)

A468

EI A185 (98), A228 (106), A82 (36), A464 (40), A25 (62), A165 (53), A77
(94), A368 (68), A277 (34), A190 (44), A524 (39), A27 (46), A229
(39), A28 (40), A278 (47)

A228

EH A244 (36), A260 (25), A117 (36), A367 (31), A523 (51), A320 (16),
A404 (48), A42 (32), A211 (41), A451 (18), A56 (28), A373 (17)

A523

EK A64 (27), A315 (47), A65 (24), A119 (26), A456 (24), A89 (26), A219
(54), A476 (42), A271 (47), A408 (35), A495 (48), A357 (31), A516
(27), A123 (38), A416 (33), A178 (13), A104 (24), A376 (37)

A219

EF A115 (56), A204 (76), A385 (72), A500 (77), A396 (69), A474 (71),
A275 (49), A294 (86), A128 (79), A520 (71), A319 (62), A397 (46),
A74 (34), A312 (43), A403 (45)

A294

DA A529 (39), A114 (21), A290 (35), A488 (47), A345 (44), A503 (31),
A152 (50), A162 (25), A222 (14), A508 (37), A86 (30), A83 (22), A361
(55)

A361

BU A382 (5), A442 (6), A519 (9), A409 (1), A384 (7), A148 (7), A103
(-2), A187 (3)

A519

DV A166 (11), A293 (7), A177 (2), A182 (-1), A144 (3), A465 (-7) A166

To achieve this, we assigned a weighted similarity score to each product in a cluster.

We measure similarity based on the number of attribute relationships a candidate product

shares with the other products in the same cluster. The score is weighted more heavily

by attribute relationships which are shared by larger numbers of products in a cluster and

weighted less by relationships shared with fewer products. The similarity score of the

candidate product is decreased by the number of attribute relationships which are unique

to the product. These are attribute relationships that are not shared with any products in

the cluster. For example, consider cluster c containing four products p1, p2, p3, p4. The
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goal is to determine the product that best represents the other products in cluster c. We

perform a PCA for each product and show the PCA loadings in Tables 4.3 through 4.6.

In these tables, the row IDs correspond to the attributes shown earlier in Table A.1. The

column IDs are the names of the principal components. The numbers in each column are

the loadings for the principal component. The PCA loadings shown in boldface form the

principal component relationships for each product. These are identified using techniques

in [21] [126] [82] [122] [10]. For example, in Table 4.6 the PCA loadings for PC1 result in

a relationship between A3 and A5. This relationship is interpreted as “attribute A3 (incident

priority) varies with A5 (incident is resolvable through First Call Resolution) for product

p1”.

Table 4.7 shows all of the principal component relationships found in products p1, p2,

p3 and p4 in cluster c. A bullet in Table 4.7 indicates the principal component relationship

in the left column is found in the product identified in the column header. Some attributes

vary independently, such as A9 in Table 4.7 for PC1. In other words, attribute A9 does not

vary with any other attribute.

For each principal component relationship, a relationship score is calculated and shown

in the right-most column in Table 4.7, according to the following assignments:

• A relationship found in exactly four products is assigned a score of 3

Table 4.3: PCA loadings for scoring example: product p1

PC1 PC2 PC3 PC4 PC5
A1 0.2124 0.3130 -0.3699 0.1651 -0.2458
A2 -0.0200 -0.2648 -0.4168 0.1978 0.1871
A3 0.8038 0.0296 0.2538 -0.1603 -0.2805
A4 0.0920 0.5006 -0.2795 0.1706 -0.1452
A5 0.7889 0.1478 -0.2066 -0.1390 0.0682
A6 0.0680 -0.6004 -0.2265 0.3063 0.2982
A7 0.1459 0.2198 -0.0025 0.5123 -0.1574
A8 -0.0170 0.3011 0.1069 -0.8662 0.0874
A9 -0.2071 0.2267 0.0837 0.0779 0.4223

A10 -0.2216 -0.2184 0.2822 0.1746 0.3298
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Table 4.4: PCA loadings for scoring example: product p2

PC1 PC2 PC3 PC4 PC5
A1 -0.3955 0.3166 0.1674 0.0457 0.3023
A2 -0.4587 0.1164 -0.0872 0.1867 -0.1206
A3 -0.0014 0.4892 0.0337 0.1202 0.1584
A4 -0.0347 -0.1873 0.7821 -0.0747 0.2256
A5 0.1937 0.6891 0.0499 0.0998 -0.0116
A6 0.2892 -0.1487 -0.4520 -0.0989 -0.3184
A7 -0.0612 0.0632 0.2316 -0.3972 -0.2350
A8 -0.2587 -0.2237 0.0771 -0.2857 -0.6123
A9 -0.3155 -0.2147 0.1263 0.2232 0.5563

A10 -0.0530 0.0961 0.1915 -0.4235 -0.1711

Table 4.5: PCA loadings for scoring example: product p3

PC1 PC2 PC3 PC4 PC5
A1 0.2513 -0.3109 0.0627 -0.0179 0.2369
A2 -0.0269 0.2793 0.1674 0.1557 -0.0635
A3 -0.2033 -0.2574 0.7756 0.2081 -0.2958
A4 -0.1123 0.4561 0.0039 0.1345 -0.2210
A5 0.2524 0.0489 0.3287 -0.0200 0.2015
A6 0.2381 -0.6154 0.0947 0.0364 -0.2633
A7 -0.2174 0.1160 -0.1342 0.6122 0.0968
A8 0.0526 -0.0044 0.2559 -0.7708 0.1678
A9 -0.8223 -0.2031 0.0585 -0.1161 -0.0078

A10 -0.3055 -0.0926 0.2675 0.2706 -0.4800

Table 4.6: PCA loadings for scoring example: product p4

PC1 PC2 PC3 PC4 PC5
A1 -0.0378 0.1164 -0.2083 0.2569 0.0725
A2 0.0959 0.2390 0.5514 0.1444 -0.2855
A3 0.5621 -0.3020 -0.0036 0.1263 -0.1564
A4 0.2028 0.3298 0.2717 -0.1862 0.0111
A5 0.6632 0.2143 0.0933 0.0893 0.1494
A6 0.2890 -0.4877 0.0527 -0.1172 -0.0276
A7 0.1640 0.2642 0.1142 0.1550 0.3550
A8 0.0361 0.0793 0.1827 0.2627 -0.0749
A9 -0.3185 0.2864 0.0351 -0.2780 -0.2404

A10 -0.0971 -0.1790 0.0054 -0.3870 0.1424
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• A relationship found in exactly three products is assigned a score of 2

• A relationship found in exactly two products is assigned a score of 1

• A relationship found in exactly one product is assigned a score of -1

Table 4.7 shows the relationship score summation for each of the four products and the

resulting similarity score. The product with the highest similarity score is designated as

the cluster representative. In this example, product p1 has a similarity score of 7, which is

higher than the scores for the other three products as shown in the bottom row of Table 4.7.

Product p1 is therefore determined to be the representative of cluster c.

In the similarity scoring technique for n products in c, the attribute relationships for

the product to be scored are compared against the n − 1 other products. The similarity

score is influenced positively by higher numbers of shared relationships and incorporates a

penalty for the non-shared (unique) relationships. Table 4.2 shows the eleven clusters and

the products which comprise each cluster. The similarity score assigned to each product

using the scoring technique described above is shown in parenthesis next to each product

ID. The product selected to represent the cluster members is shown in the column labeled

“Selected Product”. As a means of comparing the cluster representatives, Table 4.8 shows

the number of installations and incidents for each cluster representative, and the time period

over which the incidents were generated.

4.5.1.2 Incident Estimates Representative Product per Cluster

In pilot study 4, we adapted the SRGM model selection approach from Stringfellow et

al., Andrews et al. and Andersson [104] [105] [7] by including a step at which the model

with the best GOF value was selected for incident prediction. This model selection process

is shown earlier in Figure 3.7. In this large scale approach case study we use the same

model selection process. Figure 3.7 shows our estimation process. The process begins with

obtaining cumulative incident data for the eleven representative products. The incident data
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Table 4.7: Product similarity scoring example for cluster c

Products in cluster c
Principal

comp. relationship p1 p2 p3 p4
Relationship

score
A1, A2 • • 1
A3, A5 • • • • 3
A4, A6 • • • • 3
A7, A8 • • 1

A9, A10 • -1
A7, A10 • -1

A8, A9 • -1
A9 • -1

A10 • • 1
A2 • -1
A7 • -1

Rel. score sum 1 + 3 + 3 + 1 -1 1 + 3 + 3 - 1 -1 3 + 3 + 1 -1 -1 3 + 3 -1 -1 -1
Similarity score 7 5 5 3

Table 4.8: Cluster representatives - product characteristics

Cluster ID Cluster rep ID Num installations Num incidents Dates of incidents
BV A44 32214 345 4/11/2008 - 10/17/2013
EW A249 121,259 199 6/24/2008 - 10/23/2013
EG A511 452 481 4/1/2008 - 10/22/2013
ER A468 1602 51 8/15/2008 - 1/7/2013
EI A228 7570 65 4/11/2008 - 8/31/2012
EH A523 119,341 3358 5/22/2008 - 9/13/2013
EK A219 4704 111 4/9/2008 - 10/30/2013
EF A294 3531 1088 4/2/2008 - 10/24/2013
DA A361 240 174 4/1/2008 - 10/25/2013
BU A519 1357 269 4/10/2008 - 10/10/2013
DV A166 11,016 656 4/1/2008 - 5/23/2013

is applied to all four SRGMs by running a curve fit to estimate model parameters for each

SRGM. Models which do not converge are rejected. In the next step we determine the R2

GOF value for each model that converges. The model with the best R2 value is selected

for prediction of incidents. The model is used to predict incidents for the next period (for

example, one month), and to predict the remaining number of incidents. In these last two

steps the model may be used to predict incidents for more than one period (one month and

two month predictions, for example). After the predictions are made, the first process is

repeated, starting with the collection of incidents for the next period. Tables 4.9 through

4.12 show the results of applying this approach to the representative products in all eleven
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clusters for an R2 threshold of 0.95 (Tables 4.9 and 4.10) and 0.99 (Tables 4.11 and 4.12).

Tables 4.9 and 4.11 show the estimated number of incidents for R2 thresholds of 0.95 and

0.99, respectively. Tables 4.10 and 4.12 show the estimated remaining number of incidents

for R2 thresholds of 0.95 and 0.99, respectively. Incident data from April 2008 through

August 2012 was used to obtain the results. To the right of the cluster ID in each table is

the ID of the representative product. The SRGM column lists the model that resulted in

the best R2 value. The number of incidents predicted for one month through five months

out is shown along with the remaining number of incidents for the one month through five

month prediction periods. The remaining number of incidents is obtained by subtracting

the predicted number of incidents submitted from the total number of incidents predicted

by the SRGM, as shown in Figure 3.8. For R2 ≥ 0.95 (Table 4.9), all curve fits resulted in

at least one model that converged with R2 greater than 0.95. However for R2 ≥ 0.99 (Table

4.11), cluster EI resulted in R2 less than 0.99 for all models. The best R2 value for EI was

0.9541 for the GO Musa model. We note in Table 4.8 that product A228, the representative

for cluster EI, produced the second smallest number of incidents over the time period in this

case study. In fact, this product has only 65. An inspection of the cumulative incident data

shows the number of incidents for this product reaches 100% of its total incidents after 48

months. The remaining 4 months have no more incidents. In contrast, the representative for

cluster ER (product A468) which has even fewer total incidents than A228 (51), achieved

an R2 value of 0.9951. An inspection of the incident data for A468 indicates the number of

incidents for this product reaches 100% of its total during the last month of analysis. None

of the other representative products have stopped producing incidents at the end of the data

collection period. These results suggest products at or beyond their incident-producing

periods may not be suitable candidates for representing other products in a cluster.

It is interesting to see that this method was able to come up with an individual estimate

in all but the EI cluster representative at R2 ≥ 0.99 (at least one of the models converged).

Having estimated future incidents for the representative product in each cluster, we turn to

108



www.manaraa.com

Table 4.9: Incident estimations for cluster representatives, R2 ≥ 0.95

Cluster Cluster SRGM Incidents for next period
ID rep 1 mo 2 mo 3 mo 4 mo 5 mo
BU A519 Mod Gompertz 246 249 252 255 259
BV A44 Mod Gompertz 315 322 328 335 342
DA A361 Mod Gompertz 167 169 172 174 177
DV A166 Mod Gompertz 626 629 631 633 636
EF A294 Mod Gompertz 1064 1069 1073 1077 1081
EG A511 Mod Gompertz 452 455 458 461 464
EH A523 Gompertz 3170 3197 3222 3246 3269
EI A228 GO Musa 59 59 59 59 59
EK A219 Gompertz 99 100 100 101 102
ER A468 Gompertz 51 51 52 52 52
EW A249 Mod Gompertz 130 132 134 137 139

Table 4.10: Remaining incidents for cluster representatives, R2 ≥ 0.95

Cluster Cluster SRGM Remaining incidents
ID rep 1 mo 2 mo 3 mo 4 mo 5 mo
BU A519 Mod Gompertz 242 239 236 233 229
BV A44 Mod Gompertz 704 697 691 684 677
DA A361 Mod Gompertz 117 115 112 110 107
DV A166 Mod Gompertz 43 40 38 36 33
EF A294 Mod Gompertz 121 116 112 108 104
EG A511 Mod Gompertz 2792 2789 2786 2783 2780
EH A523 Gompertz 546 519 494 470 447
EI A228 GO Musa 0 0 0 0 0
EK A219 Gompertz 10 9 9 8 7
ER A468 Gompertz 2 2 1 1 1
EW A249 Mod Gompertz 292 290 288 285 283

Table 4.11: Incident estimations for cluster representatives, R2 ≥ 0.99

Cluster Cluster SRGM Incidents for next period
ID rep 1 mo 2 mo 3 mo 4 mo 5 mo
BU A519 Mod Gompertz 246 249 252 255 259
BV A44 Mod Gompertz 315 322 328 335 342
DA A361 Mod Gompertz 167 169 172 174 177
DV A166 Mod Gompertz 626 629 631 633 636
EF A294 Mod Gompertz 1064 1069 1073 1077 1081
EG A511 Mod Gompertz 452 455 458 461 464
EH A523 Gompertz 3170 3197 3222 3246 3269
EI A228 none - - - - -
EK A219 Gompertz 99 100 100 101 102
ER A468 Gompertz 51 51 52 52 52
EW A249 Mod Gompertz 130 132 134 137 139
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Table 4.12: Remaining incidents for cluster representatives, R2 ≥ 0.99

Cluster Cluster SRGM Remaining incidents
ID rep 1 mo 2 mo 3 mo 4 mo 5 mo
BU A519 Mod Gompertz 242 239 236 233 229
BV A44 Mod Gompertz 704 697 691 684 677
DA A361 Mod Gompertz 117 115 112 110 107
DV A166 Mod Gompertz 43 40 38 36 33
EF A294 Mod Gompertz 121 116 112 108 104
EG A511 Mod Gompertz 2792 2789 2786 2783 2780
EH A523 Gompertz 546 519 494 470 447
EI A228 none - - - - -
EK A219 Gompertz 10 9 9 8 7
ER A468 Gompertz 2 2 1 1 1
EW A249 Mod Gompertz 292 290 288 285 283

Table 4.13: Actual incidents for predictions by cluster representatives, R2 ≥ 0.95

Cluster ID Actual incidents for next period
1 mo 2 mo 3 mo 4 mo 5 mo

BU 239 243 251 258 260
BV 321 329 331 334 338
DA 165 168 170 171 173
DV 627 633 639 641 641
EF 1057 1061 1064 1069 1074
EG 462 463 470 470 470
EH 3227 3251 3265 3274 3276
EI 65 65 65 65 65
EK 101 101 103 105 107
ER 52 52 52 52 52
EW 108 119 125 141 146

estimating incidents for all products in a cluster. Note that this method allows for flexible

prediction time frames. We have shown 1-5 month predictions as an example.

4.5.1.3 Incident Estimation Using Cluster Representatives

We present two approaches for estimating the number of incidents that will be generated

by each cluster.

• Scalar approach: The estimate of incidents produced by all cluster members in a

cluster is determined by multiplying the number of incidents predicted by the cluster

110



www.manaraa.com

Table 4.14: Relative error for predictions by cluster representatives, R2 ≥ 0.95

Cluster ID Relative error
1 mo 2 mo 3 mo 4 mo 5 mo

BU 0.0293 0.0247 0.0040 -0.0116 -0.0038
BV -0.0187 -0.0213 -0.0091 0.0030 0.0118
DA 0.0121 0.0060 0.0118 0.0175 0.0231
DV -0.0016 -0.0063 -0.0125 -0.0125 -0.0078
EF 0.0066 0.0075 0.0085 0.0075 0.0065
EG -0.0216 -0.0173 -0.0255 -0.0191 -0.0128
EH -0.0177 -0.0166 -0.0132 -0.0086 -0.0021
EI -0.0923 -0.0923 -0.0923 -0.0923 -0.0923
EK -0.0198 -0.0099 -0.0291 -0.0381 -0.0467
ER -0.0192 -0.0192 0.0000 0.0000 0.0000
EW 0.2037 0.1092 0.0720 -0.0284 -0.0479

representative by the number of products in the cluster, as in Equation 4.5.1.

IncidentsS = Incidentsrep ∗ |cluster| (4.5.1)

• Linear function approach: A function derived through linear regression based on his-

torical incident data is used to estimate incidents produced by all cluster members for

a given cluster. The linear function relates actual incidents numbers from the cluster

representative to the number of incidents produced by all cluster members. With the

linear function approach, the estimated number of incidents for a cluster is a linear

transformation of the number of incidents predicted by the cluster representative, as

shown in Equation 4.5.2, where a and b are the coefficient and intercept, respectively,

resulting from the linear regression.

IncidentsL = a ∗ Incidentsrep + b (4.5.2)

For both methods, the estimated number of incidents for all 156 products is obtained by

summing the per-cluster estimates for all eleven clusters.
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4.5.1.4 Scalar Method

Let Ncri be the number of incidents predicted for the representative product of cluster

ci (i = 1 . . . n, where n is the number of clusters).

Let mi be the number of products in cluster i.

Then Nci , the number of incidents predicted for cluster ci is given by

Nci = mi ∗Ncri (i = 1, . . . , n) (4.5.3)

The total number NS of incidents is then given by

NS =
n∑

i=1

Nci =
n∑

i=1

mi ∗Ncri (4.5.4)

Table 4.15: Scaled incident prediction relative error for one month prediction using Scalar
Method (September 2012)

Actual Predicted Rel. err. Actual Est. Rel. err.
Cluster num inc num inc per num inc num inc per

ID cluster cluster cluster cluster per cluster cluster
rep Ncri rep Nci

BU 239 246 0.0293 4773 1968 -0.5877
BV 321 315 -0.0187 6089 3780 -0.3792
DA 165 167 0.0121 4340 2171 -0.4998
DV 627 626 -0.0016 3409 3756 0.1018
EF 1057 1064 0.0066 11525 15960 0.3848
EG 462 452 -0.0216 12692 6328 -0.5014
EH 3227 3170 -0.0177 12028 38040 2.1626
EI 65 59 -0.0923 1210 885 -0.2686
EK 101 99 -0.0198 7911 1782 -0.7747
ER 52 51 -0.0192 2032 1326 -0.3474
EW 108 130 0.2037 6118 2210 -0.6388
Total 6424 6379 -0.0070 72127 78206 0.0843

(overall NS (overall
rel. err.) rel. err.)

Table 4.15 shows the results of applying the scalar incident prediction method to esti-

mate the cumulative number of incidents that will be generated by all 156 products in one
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month. Incident data from April 2008 through August 2012 was used in the predictions, so

the one month predictions in Table 4.15 are for September 2012. Starting in the left two

columns of Table 4.15, each cluster ID is shown with the actual number of incidents pro-

duced by its cluster representative. In the third column, the predicted number of incidents

for each cluster representative is shown. These are the values of Ncri in Equation 4.5.3. The

relative prediction error per cluster representative is included in the table to show the accu-

racy with which each cluster representative product predicts its own incidents. The overall

relative error based on the cluster representatives is shown at the bottom of the column ti-

tled “Relative err. per cluster rep”. This number is calculated from the total of the predicted

number of incidents for each cluster representative, and the total of the actual number of

incidents for each cluster representative, using the formula (predicted - actual)/actual. The

column titled “Actual num inc. per cluster” contains the known number of incidents pro-

duced by all members of each cluster through the month of September 2012. As with the

numbers in the column “Actual num incidents cluster rep”, the actual number of incidents

produced by all cluster members is used to calculate relative prediction error by cluster.

The numbers in the column titled “Est. num incidents per cluster” are the scaled values for

Nci obtained through Equation 4.5.3. Their sum is used along with the sum of the actual

number of incidents per cluster to determine the relative incident prediction error for all 156

products combined.

Using the scalar incident prediction method, the relative error per cluster representative

shown in the fourth column from the left in Table 4.15 varies from a minimum (worst under-

prediction) of -0.0923 (cluster representative for EI) to a maximum (worst over-prediction)

of 0.2037 (cluster representative for EW). The two most accurate cluster representative

incident predictions (relative error closest to zero) are -0.0016 and 0.0066. These are from

the clusters DV and EF respectively. The mean and median incident prediction relative

error for all cluster representatives are 0.0055 and -0.0177 respectively. The overall one

month incident prediction error of the cluster representatives is -0.0070. This absolute error
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Figure 4.3: Cluster DV representative

 

Figure 4.4: Cluster EF representative

 

Figure 4.5: Cluster EI representative

 

Figure 4.6: Cluster EW representative

of 45 incidents out of an actual number of 6424 results in an underprediction of 0.7%.

Although this is a reasonably small overall prediction error, we wanted to investigate why

some incident predictions from the representatives were more accurate than others.

The predicted and actual cumulative incidents as a function of time are shown for the

two most accurate one month predictions (Figures 4.3 and 4.4), and the two least accurate

one month predictions (Figures 4.5 and 4.6). We can see how data points for the actual

incidents fit the curve for the predicted incidents somewhat better for DV and EF in Figures

4.3 and 4.4, compared to EI and EW in Figures 4.5 and 4.6. The difference is more evident

in months 45 though 53 for all four cluster representatives compared to earlier months.

Since one month predictions beyond month 53 are measured against actual incidents (see

Table 4.15, column “Relative error per cluster rep”), the error at month 53 detected visually

helps explain why predictions one month out have the same approximate magnitude of error

as one month earlier. For clusters DV and EF, whose representatives resulted in the two most

accurate predictions, the curve fit error shown graphically in Figures 4.3 and 4.4 at month
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53 is very small. Another distinction between the four results in Figures 4.3 through 4.6

is that number of incidents at month 53 for the two least accurate predictors is only about

10% of the number of incidents for the two most accurate predictors. The appearance of the

predicted curve for EI in Figure 4.5 for the later months is close to horizontal. This denotes

the product selected to represent EI is approaching the end of its incident producing period.

Each SRGM in this case study has a parameter which holds the value for the cumulative

number of incidents that would eventually be reached if sufficient time were permitted.

By appearance of Figure 4.5 for cluster representative EI, that number is slightly under 60

incidents. An inspection of the detailed results for the curve fit for EI confirms the number

is 59. This validates our suspicion of the life cycle phase of the desktop product selected

to represent cluster EI. In contrast, the appearance of Figure 4.6 for cluster representative

EW indicates incidents are still being produced at month 53 since there is no evidence of

the curve flattening out. Given the resulting prediction error, this may suggest the cluster

representative for EW is not sufficiently mature to accurately represent the other cluster

members, although for the other seven cluster representatives whose curve fits graphs are

not shown for brevity, three indicate a similar level of maturity as seen with EF. These

findings present an opportunity for an extension of this research with a focus on product

life cycle, product incident volume, and candidacy for cluster representation.

The two right-most columns in Table 4.15 show the results of scaling the number of

incidents estimated for each cluster representative, using Equation 4.5.3, and the per-cluster

relative error. Table 4.15 also includes the actual number of incidents per cluster. This

number is the sum of the actual incidents produced by each member of the cluster identified

in the “Cluster ID” column. The per-cluster actual number of incidents is used with the

per-cluster estimated number of incidents to calculate the relative error per cluster shown in

Table 4.15. Additionally, totals for the actual and estimated number of incidents and overall

relative error are shown at the bottom of the table. These values are associated with all 156

products.
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In addition to incident predictions based on cluster representatives, Table 4.15 shows

the per-cluster incident prediction and relative prediction error. Similar to our analysis of

relative error for each cluster representative, we are interested in per-cluster relative error

and why some cluster predictions are more accurate than others. In the “Rel. error per

cluster” column in Table 4.15 we see a range of -0.7747 for cluster EK (worst underpre-

diction) to 2.1626 for cluster EH (worst overprediction). The mean and median relative

error are -0.1226 and -0.3792 respectively. The overall relative error is 0.0843. Our first

observation is that overall relative error of 0.0843 (bottom of right-most column of Table

4.15) is worse compared to the overall relative error of the cluster representatives (-0.0070).

Secondly, the magnitude of the per-cluster relative error is much greater than that of each

cluster representative for all eleven clusters. An inspection of the clusters which resulted in

the two most accurate predictions (DV and EI) and two least accurate predictions (EH and

EK) indicates weak correlation with the two best and two worst predictions for the cluster

representatives. Cluster DV resulted in the most accurate incident prediction for both the

cluster representative and for all cluster members. Interestingly, EI is the next most accurate

cluster predictor while it was one of the worst as a cluster representative. This tells us that

incident prediction accuracy by the cluster representatives (using the scalar incident pre-

diction method) is not a strong indicator of cluster-wide accuracy based on the one month

prediction results. This is not surprising since the scalar method uses only one variable, mi,

to transform the prediction of the cluster representative to a prediction of incidents for all

members of the cluster it represents. More than one variable in the transformation, as will

be discussed with the linear function method, is likely to achieve better prediction accuracy

through an improved function fit. As will be seen, however, the trade-off for improved pre-

diction accuracy is the additional effort required to perform the linear regression associated

with the linear function method.
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4.5.1.5 Linear Function Method

In the linear function approach to incident prediction, we develop a set of linear func-

tions to relate the number of incidents predicted by the cluster representative to the number

of incidents for the aggregate of all members of the cluster.

Let Acri(t) be the actual incident counts for time frame t for the cluster representative

cri for cluster ci (i = 1, . . . , n), where n is the number of clusters.

Let Ai(t) be the actual incident counts for time frame t for cluster ci (i = 1, . . . , n).

Assume that 1 ≤ t ≤ T , where T is the time period for which measurements are available.

We perform linear regressions of the form

Ai = xiAcri + yi (i = 1, . . . , n) (4.5.5)

to determine constants xi and yi for each cluster Ci.

Then Nci , the number of incidents predicted for cluster ci is given by

Nci = xiNcri + yi (4.5.6)

We then can use these linear functions to predict total number of incidents NL based on

the predicted incidents for each cluster representative:

NL =

n∑
i=1

Nci (4.5.7)

These functions allow us to predict the number of incidents for all members of a cluster

based on the cluster representative alone. Table 4.16 shows for each cluster actual cumula-

tive incidents vs. estimated incidents and relative error. As with the scalar method described

earlier, incident data from April 2008 through August 2012 was used in the predictions, so
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Table 4.16: Incident prediction relative error for one month prediction using Linear Func-
tion Method (September 2012)

Actual Estimated Relative error
num incidents num incidents per

Cluster ID per cluster per cluster cluster
xiNcri + yi

BU 4773 5373 0.1257
BV 6089 8603 0.4129
DA 4340 3236 -0.2544
DV 3409 3849 0.1291
EF 11525 10726 -0.0693
EG 12692 13844 0.0908
EH 12028 12181 0.0127
EI 1210 417 -0.6554
EK 7911 6496 -0.1789
ER 2032 1617 -0.2042
EW 6118 5970 -0.0242
Total 72127 72312 0.0026

(NL) (overall rel. error)

the one month predictions in Table 4.16 are for September 2012. The overall relative error

is shown at the bottom of the column titled “Relative error per cluster”. This is calculated

from the estimated number of incidents for each cluster, and the total of the actual number

of incidents for each cluster representative, using the formula (predicted - actual)/actual.

Similar to our analysis of relative error for each cluster representative using the scalar

incident prediction method, we are interested in per-cluster relative error with the linear

function method as well as overall relative prediction error. Specifically, we investigate

why some cluster predictions are more accurate than others. The relative error per cluster

shown in Table 4.16 varies from a minimum (worst under-prediction) of -0.6554 (cluster

representative for EI) to a maximum (worst over-prediction) of 0.4129 (cluster represen-

tative for BV). The two most accurate incident predictions (relative error closest to zero)

are 0.0127 and 0.0242. These are from the cluster representatives for EH and EW respec-

tively. The mean and median relative error calculated from the set of eleven estimations are

-0.0559 and -0.0242 respectively. The overall relative error is 0.0026.
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Our first observation with the results of the linear function method is that the overall

incident prediction is rather accurate for this particular case of one month incident predic-

tions. An overall relative error of 0.0026 means the one month prediction overestimates

incidents for all 156 products combined by 0.26%. The absolute error of 185 incidents is

quite small compared to the total incident volume of approximately 72,000 incidents. The

other significant finding with the linear function method is that in spite of the relatively in-

accurate per-cluster predictions (for example EI and BV in Table 4.16), the overall relative

error is small.

4.5.1.6 Estimate of Incidents for All Products

This requires estimating incidents for all 156 products. It is by far the most expensive.

This method estimates 77,491 incidents compared to 72,127 actual incidents with a relative

error of 6%. So not only is it very expensive, it is also rather inaccurate. A comparison of

the estimation methods in terms of effort is presented in the next section.

Table 4.17: Incident prediction relative error for one month prediction: Scalar and Linear
function methods (September 2012)

Cluster Scalar Linear function
Actual Estimated Relative Estimated Relative

ID incidents incidents error incidents error
per cluster per cluster per cluster per cluster per cluster

BU 4773 1968 -0.5877 5373 0.1257
BV 6089 3780 -0.3792 8603 0.4129
DA 4340 2171 -0.4998 3236 -0.2544
DV 3409 3756 0.1018 3849 0.1291
EF 11525 15960 0.3848 10726 -0.0693
EG 12692 6328 -0.5014 13844 0.0908
EH 12028 38040 2.1626 12181 0.0127
EI 1210 885 -0.2686 417 -0.6554
EK 7911 1782 -0.7747 6496 -0.1789
ER 2032 1326 -0.3474 1617 -0.2042
EW 6118 2210 -0.6388 5970 -0.0242

Total 72127 78206
0.0843

72312
0.0026

(overall (overall
RE) RE)
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Table 4.18: Incident prediction relative error for one month prediction: All products method
(September 2012)

All products
Actual number of incidents Estimated incidents Relative error

72172 77491 0.0585

4.5.1.7 Comparison of approaches to estimate future incidents

We compare all three approaches to incident prediction for a one month interval. Table

4.17 shows the comparison in the order in which the estimation methods is presented. The

results are obtained using incident data from April 2008 through August 2012, to predict

incidents for September 2012. Starting with the left-most column in Table 4.17 we show

the cluster IDs. The actual number of incidents produced by each cluster representative is

shown to the right of the column of cluster IDs. Column two shows the actual incidents per

cluster. Column three shows the number of incidents estimated for each cluster using the

Scalar method. In column four we show the incident prediction relative error for the cluster

representatives. Columns five and six show the estimated incidents for each cluster and

the relative prediction error respectively, for the Linear function method. Table 4.18 shows

the relative prediction error of 0.0585 using the All products method, calculated from the

estimated number of incidents for all 156 products using this method.

• For the Scalar method, the predicted number of incidents per cluster representative,

scaled by the number of products in each cluster, is shown along with the relative

prediction error per cluster. The relative prediction error of 0.0843 is determined

by the sum of the estimated number of incidents per cluster (78206) and the actual

number of incidents per cluster (72127).

• For the Linear function method, the predicted number of incidents per cluster rep-

resentative, transformed by the linear function described earlier, is shown with the

relative prediction error per cluster. The error of 0.0026 is based on estimated total

incidents (72312) versus the actual number of incidents per cluster (72127).
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• For the All products method, the estimated number of incidents (77491) and the sum

of the actual number of incidents (72127) are used to calculate a relative error of

0.0585.

• Overall in Tables 4.17 and 4.18, we observe the Linear function estimation method

results in the most accurate prediction of incidents. The All products method is the

second best, and the Scalar method is the least accurate of the three estimation meth-

ods. We will investigate the quality of prediction beyond one month in the validation

section.

We conclude our analysis with a comparison of the incident estimation methods, and

discuss the trade-off of effort that is necessary with the more accurate incident prediction

method. In terms of overall prediction accuracy, the Linear function method is more accu-

rate than both the Scalar method and the All products method when predicting incidents one

month out for the month of September 2012. Additionally, per-cluster incident prediction

accuracy with the Linear function method is generally better than with the Scalar method.

A more extensive investigation of the All products incident estimation method is presented

in our previous work [11], where help desk incidents are estimated for 156 products using

22 cumulative incident data sets. For each data set, incidents are predicted at five prediction

intervals (one month, two months, through five months). The median of relative prediction

error found at the one month predictions was 0.0582 using the All products method. In this

case study the All products method resulted in a relative prediction error of 0.0585 which

is very close to the median error from our previous work. As discussed earlier, the Scalar

method uses only one variable to estimate the number of incidents for all members of a

cluster based only on incidents predicted by the cluster representative, so we expect less

accurate predictions than what is produced by the Linear function method which uses two

variables.
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4.5.1.8 Cost Data Analysis

The cost model validated in this case study is developed using monthly incident data

from product clusters and help desk technician labor costs. Using linear regression, a func-

tion is produced which relates per-cluster incident predictions to the cost to resolve the

incidents. The role of the cost prediction model is shown in Figure 4.7. Per-cluster incident

predictions from either the scalar model or the linear function model are inputs to the cost

prediction model. Cost is predicted using linear regression.

The actual monthly labor costs obtained from the help desk managers in this case study

is a set of monthly labor figures to resolve all incidents from all products used in the organi-

zation. As explained earlier, we applied a set of criteria to select the 156 products. Our cost

model is based on estimated incidents from the 156 products, and predicts costs to resolve

incidents from only the 156 products. In order to validate the cost model we need a way

to identify the amount of monthly labor attributable to them. We investigate a proportion

method in which we assume the amount of labor to resolve incidents from the 156 products

is based on the ratio of the monthly number of incidents produced by the 156 products, to

the total number of incidents produced by all products in the month.

Let Ic be the number of incidents generated by the set of clustered products at time t.

Let I be the number of incidents generated by all products at time t.

Then kc, the proportion of incidents from the clustered products at t is given as

kc = Ic/I (4.5.8)

Let R be the cost to resolve I at time t.

Then Rc, the cost to resolve Ic at t is given as

122



www.manaraa.com

Rc = kcR (4.5.9)

For the cost model, we develop a set of linear functions to relate the number of incidents

predicted by all members of a cluster to the cost associated with resolving incidents pro-

duced by the members of the cluster. The incident predictions can be determined through

either the Scalar or Linear Function methods, as shown in Figure 4.7.

Let Aci(t) be the actual incident counts for time frame t for cluster ci (i = 1, . . . , n),

where n is the number of clusters.

Then Āc, the vector of actual incident counts for time frame t is given as

Āc =



Ac1

Ac2

...

Acn


(4.5.10)

Let Rc(t) be the actual cost of resolving incidents in Āc for time frame t. We perform

linear regressions of the form

Rc = kcR = ĀcP̄ + q (4.5.11)

to determine coefficients pi ∈ P̄ (i = 1, . . . , n), where n is the number of clusters, and q is

the intercept.

Let Rci be the cost to resolve the estimated number of incidents in cluster ci.

Rci = piNci (4.5.12)
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Figure 4.7: Help desk cost prediction

Then R, the cost to resolve incidents in all clusters is given as

R = q +
n∑

i=1

Rci (4.5.13)

We can use Equation 4.5.13 to predict the total cost of resolving incidents based on the pre-

dicted incidents for each cluster. Table 4.19 shows one month cost estimations for Septem-

ber 2012. Results from incident predictions using the Scalar and Linear function methods

are show side by side for comparison. Table 4.19 shows the cluster IDs on the left. In col-

umn 2 we show the coefficients and intercept obtained from the linear regression described

above. The coefficients are the components of P̄ in Equation 4.5.11. The intercept is q.

Column s shows the actual total cost of resolving incidents produced by the 156 incidents.

The total cost is a cumulative number (total cost through August 2012 to resolve the cu-

mulative incidents produced by the 156 products through August 2012). Columns 3 and 4

show the cost predictions when incidents are estimated using the Scalar method. Columns

5 and 6 show the cost predictions when incidents are estimated using the Linear function
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method. For both methods, the estimated incidents per cluster are the same as in Table

4.17 since we are predicting incidents and cost for the same month (September 2012). For

both incident prediction methods in Table 4.19 we show the estimated cost (labor hours) for

each cluster. These numbers are calculated using Equation 4.5.12. The total estimated cost

is calculated using Equation 4.5.13. We now proceed to a discussion of the results of our

cost predictions.

Table 4.19 shows for each cluster actual labor cost, estimated labor cost, and relative

error for both the scalar and linear method of incident estimation. The sum of the per-cluster

cost components and the intercept produce the overall cost estimate to resolve the predicted

number of incidents. The cost prediction relative error of 0.0165 using the Linear incident

estimation method is much better than the cost prediction error of -0.2703 obtained using the

Scalar incident prediction method. These results are not surprising since cost predictions are

based on the estimates from the incident estimation method (Scalar versus Linear function).

Since the Linear function method produced more accurate incident estimations, we expect

more accurate cost predictions compared to the scalar method.

Table 4.19: Cost prediction relative error for one month prediction (September 2012)

Scalar method Linear function method
Cluster Actual cost Estimated cost Relative Estimated cost Relative

ID (labor hours) (labor hours) error (labor hours) error

BU

40822

237

-0.2703

646

0.0165

BV 3769 8577
DA 2136 3138
DV 5420 5554
EF 4627 3109
EG 3721 8140
EH 5331 1707
EI 1031 486
EK 1091 3977
ER 79 96
EW 2158 5828

intercept 192 192
Total 29792 41496
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4.6 Validation

The method presented so far use one month predictions to estimate the number of in-

cidents at the help desk and the labor effort required to deal with them. The results were

shown to be generally quite good, but only cover a single month. We now turn to evaluate

their performance when used over a longer period of time, i.e.

• RQ How stable are one month incident predictions when used over a long period of

time?

4.6.1 Incident Estimation

To answer this research question, we produced a set of one month incident predictions

over the 22 month time period of January 2012 through October 2013. To address predic-

tion stability over subsequent months, we apply the three estimation methods to one month

incident predictions for all 22 months and observe the range of relative error for each es-

timation method. Additionally, we compare the difference in prediction stability when the

predictions are limited to R2 GOF thresholds of 0.95 and 0.99. For each approach, we look

for median relative error closest to zero as an indicator of prediction accuracy. We also look

for the approach with the smallest interquartile range (IQR) of relative error as an indicator

of prediction stability. Finally, we look for the approach with the smallest range of outliers

as an additional indicator of prediction stability.

Figures 4.8 and 4.9 show relative incident estimation error for the three estimation ap-

proaches, at GOF thresholds of 0.95 and 0.99 for the SRGM that results in the best GOF

at each of the 22 one month periods. A numerical summary of the box plots in Figures 4.8

and 4.9 is shown in Table 4.20. Figure 4.8 shows the range of relative incident prediction

error from the three estimation methods when the predictions are limited to a GOF greater

than or equal to 0.95. The All products approach results in a median relative prediction
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error of -0.0025 with first and third quartiles at -0.0292 and 0.0217 respectively. Although

this method shows stability with median relative error centered close to zero, it results in

outliers as low as -0.3636 and as high as 0.6829. This wide range of error suggests instabil-

ity in prediction accuracy over the 22 months of predictions. The Scalar approach results

in a median prediction error of -0.5114, with first and third quartiles at -0.6172 and 0.0846

respectively, and outliers at -0.8184 and 2.0770. The Linear function approach shows a

median prediction error at -0.0648, first and third quartiles at -0.1645 and 0.0421 respec-

tively, and outliers at -0.7642 and 0.2071. Of the three incident prediction approaches at

R2 ≥ 0.95 in Figure 4.8 and summarized in Table 4.20, the All products approach has

the best median prediction accuracy (median relative error closest to zero) followed by the

linear function approach (method 3) as second-best and the scalar approach with the least

prediction accuracy. The All products approach also results in the smallest interquartile

range, again followed by Linear function then scalar. In terms of the overall range of out-

liers at R2 ≥ 0.95, Linear function results in the smallest range followed by All products

then Scalar.

Turning our attention to R2 ≥ 0.99 in Figure 4.9, we investigate incident prediction

stability for the more restrictive case in which predictions with GOF no less than 0.99 are

included. As with R2 ≥ 0.95, the more accurate prediction comes from the all products

approach, followed by Linear function method, then the Scalar method. An investigation

of interquartile range at R2 ≥ 0.99 shows us the same order as with R2 ≥ 0.95. The All

products method results in the smallest interquartile range, followed by the Linear function

method and then the Scalar method. In terms of the overall range of outliers at R2 ≥

0.99, the Linear function method results in the smallest range followed by the All products

method and then the Scalar method. Although this same rank order of median accuracy, IQR

and outlier range was observed with R2 ≥ 0.95, the range of outliers is smaller with all three

approaches for R2 ≥ 0.99 as compared with R2 ≥ 0.95. From this we observe the more

restrictive GOF threshold also excludes a greater number of the less accurate predictions.
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For R2 ≥ 0.99, an interpretation of prediction error tells us the Linear function approach

results in the most stable predictions over the 22 month period of one month predictions

since the spread of prediction error is the smallest of all three approaches. Additionally,

at R2 ≥ 0.99, incident prediction stability over the 22 month period is greater than at

R2 ≥ 0.95 through the exclusion of a higher number of less accurate predictions.

 

Figure 4.8: One month incident estimation relative error: comparison between three esti-
mation methods: R2 ≥ 0.95

 

Figure 4.9: One month incident estimation relative error: comparison between three esti-
mation methods: R2 ≥ 0.99
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Table 4.20: Summary of one month incident estimation relative error at R2 ≥ 0.95

Estimation R2 >= 0.95
method Min. 1st Qu. Median 3rd Qu. Max

1
-0.3636 -0.0292 -0.0025 0.0217 0.6829All products

2
-0.8184 -0.6172 -0.5114 0.0846 2.0770Scalar

3
-0.7642 -0.1645 -0.0648 0.0421 0.2071Linear function

Table 4.21: Summary of one month incident estimation relative error at R2 ≥ 0.99

Estimation R2 >= 0.99
method Min. 1st Qu. Median 3rd Qu. Max

1
-0.1479 -0.0228 -0.0018 0.0223 0.6829All products

2
-0.7889 -0.6128 -0.5117 0.0935 2.0770Scalar

3
-0.1986 -0.1506 -0.0511 0.0459 0.2070Linear function

Table 4.22 ranks the three estimation methods in terms of median prediction accuracy,

IQR, and outlier range, using the data in Tables 4.20 and 4.21. The rankings are the same

for both GOF thresholds. In Table 4.22, we observe the all products estimation method

predicts incidents more accurately than the Linear function approach. The Scalar method

is the least accurate. We see the same rank order of estimation methods for IQR, where

smaller IQR indicates less spread and therefore more stability. The outlier range is smallest

for the Linear function method and largest for the Scalar method. The Scalar method results

in the least prediction stability, as was observed with prediction accuracy and IQR.

In the introduction we listed a research question (RQ2) about achieving prediction ac-

curacy through the selection of product clusters rather than analyzing all 156 products.

Essentially we are asking if we can eliminate the All products incident estimation method

and still predict incidents accurately. To help answer this question, we add up the num-

ber of operations required to produce an estimate for each of the estimation methods, and

compare the results. If a method requires less work to produce an accurate estimate, that
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Table 4.22: Incident estimation method comparison by one month median prediction accu-
racy, IQR and outlier range

Median prediction accuracy
best worst

All products Linear function Scalar

IQR
smallest largest

All products Linear function Scalar

Outlier range
smallest largest
Linear function All products scalar

method would be preferred by help desk practitioners. In Table 4.23 we present the number

of operations required for each method to achieve the goal of incident estimation for all

156 products. We analyze the methods in terms of the number of predictions and number

of processing steps that are unique to the method. The All products incident estimation

method requires the most number of operations because it requires running predictions for

all products. The Scalar method requires the least number of operations and results in the

greatest number of operations saved compared to the All products method. The Linear

function method requires about twice the number of operations as the Scalar method but

still saves 71% compared to the All products method. In terms of processing effort alone,

we can reject the All products method and concentrate on the other two methods.

Table 4.23: Comparison of estimation efficiency

Method 1 Method 2 Method 3
All products Scalar Linear function

Operations

156 predictions 11 predictions 11 predictions
1 summation 11 scalar products 11 incident lookups

1 summation 11 linear regressions
11 linear functions
1 summation

total # operations 157 23 45
Relative

100% 85% 71%estimation
efficiency *

* compared to All products method
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Figure 4.10: Help desk one month incident estimation relative error by incident estimation
method

In Figure 4.10, incident estimation error from one month predictions is compared for

the scalar and linear function incident estimation methods. We observe the scalar estimation

method results in a median error less than zero. Overall, the linear function method shown

in Figure 4.10 indicates improved prediction accuracy compared to the scalar method, as

previously observed. As with the scalar method, there is little difference in terms of predic-

tion accuracy between the two GOF thresholds.

4.6.2 Effort estimation

In the final part of our validation we analyze the stability of one month cost predictions

over a 22 month period. In the approach section we made cost predictions for a single

month. Because help desk managers routinely reestimate costs on a monthly basis, we

need to ensure our technique produces stable results when applied over time. Therefore,

we make a set of 22 one month predictions and analyze the results. As with our analysis

of incident prediction stability we look for cost prediction median relative error closest to

zero as an indicator of prediction accuracy. We also look for the approach with the smallest

interquartile range of relative error as an indicator of cost prediction stability.
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Figure 4.11: Help desk one month labor cost estimation relative error by incident estimation
method

Table 4.24: Summary of one month labor cost estimation relative error by incident predic-
tion method

Pred R2 >= 0.95
method Min 1st Q Med Avg 3rd Q Max
Scalar -0.8160 -0.6105 -0.4912 -0.1831 0.0735 1.9990
Lin fun -0.7773 -0.1668 -0.0668 -0.0972 0.0421 0.2071

Pred R2 >= 0.99
method Min 1st Q Med Avg 3rd Q Max
Scalar -0.7889 -0.6075 -0.5105 -0.1595 0.0758 1.9990
Lin fun -0.1930 -0.1250 -0.0110 0.0224 0.1745 0.2861

The set of incident estimates from one month predictions over a span of 22 months

results in a range of relative error, as shown in the box plots in Figure 4.11. Since in-

cident estimations are the basis of cost predictions, we can expect to find cost prediction

error. Similar to the validation of one month incident prediction accuracy and stability, we

investigate cost prediction accuracy and stability over a longer period of time.

The box plots in Figure 4.11 show the range of cost prediction error when the Scalar

and Linear function incident estimation methods are used to predict incidents. The results

of each method are shown when SRGM curve fit results are limited to the two R2 thresholds

of 0.95 and 0.99. Table 4.24 shows the descriptive statistics for cost prediction results.
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Table 4.25: One month cumulative cost estimations: Scalar method R2 ≥ 0.99

Mo
Est. Actual Inc Est Act Effort Est Act %
inc inc pred effort effort pred cost cost var

RE (hrs) (hrs) RE ($K) ($K)
1/12 39447 64135 -0.613 89364 34072 1.615 $8,936 $3,418 161%
2/12 39478 65397 -0.519 92257 35293 1.614 $9,226 $3,529 161%
3/12 39507 66661 1.897 17174 36411 -0.528 $1,717 $3,641 -53%
4/12 39538 67804 -0.748 97416 37255 1.615 $9,742 $3,725 162%
5/12 39568 68888 -0.635 17983 38197 -0.529 $1,798 $3,820 -53%
6/12 39599 70042 -0.783 102100 39146 1.615 $10,210 $3,905 161%
7/12 39629 71192 0.094 19599 40039 -0.511 $1,960 $4,004 -51%
8/12 39660 72127 0.084 19291 40822 -0.527 $1,929 $4,082 -53%
9/12 39691 73207 -0.529 19600 41662 -0.530 $1,960 $4,166 -53%
10/12 39721 74149 -0.785 16682 42503 -0.608 $1,668 $4,250 -61%
11/12 39752 74880 1.999 128612 42885 1.999 $12,861 $4,289 200%
12/12 39782 76249 -0.094 41983 43774 -0.041 $4,198 $4,377 -4%
1/13 39813 77995 -0.789 21208 44879 -0.527 $2,121 $4,488 -53%
2/13 39844 79650 -0.593 16037 45677 -0.649 $1,604 $4,568 -65%
3/13 39872 81304 2.007 44539 46459 -0.041 $4,454 $4,646 -4%
4/13 39903 82956 -0.715 16615 47134 -0.648 $1,662 $4,713 -65%
5/13 39933 84210 -0.038 16821 47828 -0.648 $1,682 $4,783 -65%
6/13 39964 85579 -0.215 46638 48618 -0.041 $4,664 $4,862 -4%
7/13 39994 86685 -0.512 53191 49443 0.076 $5,319 $4,944 8%
8/13 40025 87668 -0.545 17612 50101 -0.649 $1,761 $5,010 -65%
9/13 40056 88781 0.858 9454 50883 -0.814 $945 $5,088 -81%
10/13 40086 89922 0.475 49376 51492 -0.041 $4,938 $5,148 -4%

As with incident predictions over 22 one month periods, the Scalar method results in

a wider range of outliers compared to the Linear function method. For the Scalar method,

the range is 2.8150 for R2 ≥ 0.95 and 2.7879 for R2 ≥ 0.99. The Linear function method

results in a range of 0.9844 for R2 ≥ 0.95 and 0.4971 for R2 ≥ 0.99. The differences

in the outlier ranges as well as the interquartile ranges across the two incident prediction

methods can be seen in Figure 4.11. These results indicate cost predictions over the 22

month period are more stable with the Linear function method. The results also indicate

little difference in cost prediction stability between the two R2 thresholds with the Scalar

method, but greater stability with the Linear function method at R2 ≥ 0.99 versus 0.95.

In terms of the median cost prediction relative error, there is not much difference between

the two R2 values using the Scalar method (-0.4912 with R2 ≥ 0.95 and -0.5105 with

R2 ≥ 0.99). There is a more noticeable difference in median cost prediction error with the
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Table 4.26: One month cumulative cost estimations: Linear function method R2 ≥ 0.99

Mo
Est. Actual Inc Est Act Effort Est Act %
inc inc pred effort effort pred cost cost var

RE (hrs) (hrs) RE ($K) ($K)
1/12 69343 64135 0.081 40926 34072 0.198 $4,093 $3,418 20%
2/12 52833 65397 -0.192 44608 35293 0.264 $4,461 $3,529 26%
3/12 56203 66661 -0.157 42622 36411 0.171 $4,262 $3,641 17%
4/12 59862 67804 -0.117 30065 37255 -0.193 $3,006 $3,725 -19%
5/12 76648 68888 0.113 32903 38197 -0.139 $3,290 $3,820 -14%
6/12 82338 70042 0.176 39921 39146 0.022 $3,992 $3,905 2%
7/12 65149 71192 -0.085 38209 40039 -0.046 $3,821 $4,004 -5%
8/12 72315 72127 0.003 41495 40822 0.017 $4,150 $4,082 2%
9/12 62182 73207 -0.151 34822 41662 -0.164 $3,482 $4,166 -16%

10/12 59423 74149 -0.199 49596 42503 0.167 $4,960 $4,250 17%
11/12 69766 74880 -0.068 50407 42885 0.175 $5,041 $4,289 18%
12/12 79749 76249 0.046 53390 43774 0.220 $5,339 $4,377 22%
1/13 89234 77995 0.144 52156 44879 0.162 $5,216 $4,488 16%
2/13 78226 79650 -0.018 45070 45677 -0.013 $4,507 $4,568 -1%
3/13 98134 81304 0.207 38560 46459 -0.170 $3,856 $4,646 -17%
4/13 78666 82956 -0.052 46948 47134 -0.004 $4,695 $4,713 0%
5/13 71960 84210 -0.146 59394 47828 0.242 $5,939 $4,783 24%
6/13 81206 85579 -0.051 46330 48618 -0.047 $4,633 $4,862 -5%
7/13 89605 86685 0.034 43263 49443 -0.125 $4,326 $4,944 -13%
8/13 77905 87668 -0.111 64435 50101 0.286 $6,443 $5,010 29%
9/13 74001 88781 -0.167 43113 50883 -0.153 $4,311 $5,088 -15%

10/13 92972 89922 0.034 49914 51492 -0.030 $4,991 $5,148 -3%

linear function method, compared to the Scalar method. The linear function method results

in a median cost prediction error of -0.0668 for R2 ≥ 0.95 and -0.0110 for R2 ≥ 0.99.

These relative error values indicate greater cost prediction accuracy compared to using the

Scalar method.

We turn to an analysis of the cost estimation results from the perspective of help desk

managers. Tables 4.25 and 4.26 show cost predictions for each month using the Scalar

and Linear function incident estimation approaches. For brevity we limit the results to cost

predictions obtained at the R2 ≥ 0.99 threshold. Starting with the left column in Tables

4.25 and 4.26 we show the calendar month and year for which one month cost predictions

are made. We include the estimated and actual number of incidents, as well as incident

prediction relative error, in columns 2, 3 and 4 for each month. The numbers for estimated

and actual incidents are cumulative. We include values for incident estimations since they
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are the basis of cost estimations. The values for effort estimation and actual monthly help

desk effort are shown in columns 5 and 6. The relative error of the effort predictions is

shown in column 7. The estimated costs in column 8 are calculated from an assumed hourly

rate of $100. The values in column 5 are multiplied by this rate to arrive at the estimated

cost numbers in column 8. Similarly, the values in column 6 are multiplied by the same

hourly rate to arrive at the actual cost numbers in column 9. Column 10 shows the percent

variance between the estimated cost in column 8 and the actual cost in column 9. Cost

variance is used routinely by the help desk managers in this case study to assess how far off

they are each month in their projection of costs.

Table 4.25 shows cost estimations and percent variance when the Scalar method is used

for one month cost predictions. The range of cost variance is -81% to 200%. The mean and

median cost variance is 5.47% and -51.90%, respectively. From the perspective of the help

desk manager, these results mean costs are under-predicted by as much as 81% and over-

predicted by nearly 200%. On average, the manager can rely on cost predictions to vary by

a little over 5%. While the average monthly cost prediction variance may seam reasonable,

predictions that vary at the extreme ends of the range are not useful for predicting help

desk costs. We observe the months for which some of the higher cost variances result are

the end of the year and the beginning of next year. The organization in this case study

has a planned shutdown in the last week of December. Additionally, many employees take

vacation late in the year. This results in a reduced number of incidents submitted to the help

desk. These conditions may explain the resulting overestimation of costs. We recommend

taking unusual months into account when estimates are made and to adjust effort estimates

accordingly.

Table 4.26 shows cost estimations and percent variance when the Linear function method

is used for one month cost predictions. The range of cost variance is -19% to 29%. The

mean and median cost variance is 3.82% and 0.63%, respectively. Compared to the Scalar

method, the Linear function method results in more stable one month cost predictions. The
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mean and median predictions are also an improvement over the Scalar method. As with

the Scalar method, we see the high and low ends of the cost prediction range tend to occur

around the months at the end of the year and the beginning of the next year.

Consultation with the help desk managers in this case study indicates an average cost

prediction variance of less than 5% would be a improvement over what actually occurs in

their environment. While historical data for monthly cost estimation was not available for

comparison with our results, we confirmed help desk monthly cost prediction variance is

usually greater than 10%. Based on this information, cost predictions using either the Scalar

or Linear function method would be an improvement over current cost prediction variance,

but the extreme under-estimations and over-estimations would likely be cause for rejection

of the Scalar method in favor of the Linear function method.

4.7 Lessons Learned and Conclusions

4.7.1 Threats to validity

We analyze the validity of our case study according to the approach taken by Rune-

son et. al. in their presentation of case study research [92]. Construct validity addresses

the extent to which operational measures of a case study are accurately represented in the

research questions. To ensure our research questions captured the operational aspect of

cost estimation, we engaged the help desk managers through discussions focused on daily

operations specific to the incident resolution. Internal validity concerns an awareness of

all factors which influence causal relationships. In this cases study, incidents drive help

desk costs. In our discussion of the three categories of help desk incidents, we were clear

about our knowledge of the separation of labor between the categories. However, our as-

sumption about relationship between labor associated with the set of software products we

investigated and labor for incidents from full product portfolio is not actually used in the

industrial setting of this case study since labor is not accounted for by product. External
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validity reflects the generalizability of our findings, and the extent to which our conclusions

are useful to others. We limited our study to products which run on the Windows operat-

ing system since the vast majority of products managed at the help desk run on Windows.

Conclusions drawn from the SRGM we used to make incident predictions may not hold

with non-Windows products. A replication of this case study using non-Windows products

would be of value to further address this aspect of validity. This case study was conducted

in a large multinational company which uses hundreds of different software products. Our

findings may not be directly applicable to small companies with fewer software products.

Reliability addresses how repeatable the results of a case study might be if conducted inde-

pendently. We were careful to describe the incident data and scope of product distribution

to the extent the confidentiality of this case study allowed, but the specific product types

were not disclosed. Since product type, functionality, and the environment in which they

are used influences operational behavior, a repetition of this case study may produce results

that are different from ours. However, we could show the level of reliability for a rather

large number of months.

4.7.2 Conclusions

This paper describes an approach to estimate incident volume and related labor cost for

a product portfolio of an IT help desk. A case study in a major international corporation

shows that the approach is quite successful in doing so, in spite of a number of assump-

tions that had to be made to deal with the limitations of available data. We discuss lessons

learned at each process step then conclude with opportunities for future work. Product se-

lection criteria established for minimum incident quantity and number of installations per

product established for this step of the process resulted in 20% of the products generated

80% of the incidents. Our process accommodates adjustment of the product selection crite-

ria in the event the product portfolio size grows or shrinks. We recommend careful attention

to the minimum number of incidents per product, as this influences curve fit results. For
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Incident data, the date and time data associated with incidents was critical to this case study.

Construction of a parsing tool to produce cumulative incident datasets from raw help desk

incident records facilitated data preparation for curve fitting. Since our incident estimation

process accommodates 1) the addition of new products, and 2) the addition of more recent

cumulative data, use of the parsing tool is recommended. With our Cost data, the assump-

tion of cost apportionment to a subset of products could have been avoided had the help

desk tracked labor by product, although the cost estimation techniques worked out well in

spite of the assumption. Recurring use of the estimation techniques requires monthly up-

dates to actual cost data. Arrangements for standard reporting of actual cost data would

have avoided the manual aggregation of cost information obtained through contact with

help desk managers. For Cluster analysis we were constrained by the limitations of the

linear regression tool to no more than 16 clusters motivated a non-standard approach to

dendrogram height selection to define clusters. Selection of a different regression tool that

has less stringent limitations would facilitate a more standard approach in cluster selection.

In spite of this constraint, we were successful in demonstrating incident prediction accuracy

through the selection of product clusters vs. analyzing a full product portfolio in a predic-

tion model. For Incident estimates for representative product per cluster we demonstrated

how incident prediction accuracy can be obtained through the selection of cluster represen-

tatives (vs. analyzing all products) to answer RQ2 “Can incident prediction accuracy be

obtained through the selection of product clusters vs. analyzing a full product portfolio in

a prediction model?”. We used PCA to determine the product which best represented the

other products in a cluster on the basis of the number of shared principal components. For

Incident estimates for all products, to answer RQ1 regarding the use of desktop software

product reliability data from the help desk to predict future incident volume, we success-

fully demonstrated three incident prediction methods. The All products, Scalar and Linear

function prediction methods were compared on the basis of prediction accuracy and effort

to arrive a predictions. The Linear function method was shown to predict incidents more ac-
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curately that the Scalar method at one month prediction intervals. Although the All products

method shows promise with incident prediction accuracy, it was rejected due to requiring

an analysis of all 156 products. The Linear function and Scalar methods required less effort

to predict incidents. For Cost estimation we successfully demonstrated that help desk labor

data can be used to estimate costs of future incidents in response to RQ3. Linear regression

was used to predict help desk labor from incident volume. The regression coefficients were

used as parameters for the cost estimation model.
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5 Future Work

5.1 Error Analysis

The approach taken with the large scale application of incident prediction techniques

involved two metrics for assessing how incident data can be used to make cost predictions:

1) How well incident data was curve fit to SRGMs, measured using the R2 GOF value, and

2) Prediction accuracy. In the SRGM selection process, the model with the highest R2 was

selected as shown in Figure 3.7. Incident predictions obtained from the selected model were

later used as the basis for cost predictions. Although the selection was made independent

of the resulting incident prediction accuracy, the overall cost prediction process illustrated

in Figure 4.1 resulted in accurate predictions. These findings inspire interest in an analysis

of incident prediction error vs. SRGM curve fit. The abundance of help desk incident data

and the large portfolio of products afford an opportunity for sufficient data to measure the

correlation between SRGM curve fit and prediction accuracy. The motivation for this future

work is a potential refinement of the process shown in Figures 3.7 and 4.1 to select the best

metric for model selection.

5.2 Product Portfolio Upgrades and Removals

The realities of a dynamic IT environment include frequent changes in the desktop soft-

ware product portfolio. As business conditions change, new products are introduced and

older ones are retired. Commercial software products frequently make new features avail-
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able through upgrades. When an organization undergoes a change in its product portfolio,

employees must adapt to new features and functionality. Minimally tested commercial

products, or those tested under conditions that differ from the operational profile in which

they are later deployed, result in latent failures. The combination of the learning curve em-

ployees experience and post-release failures drives help desk calls. Managers would benefit

from a cost prediction process that models changes in the product portfolio. Similar to the

benefits of cost estimations based on future incidents, estimating impacts to costs due to

product upgrades and removals would be useful to help desk managers.

5.3 Cost Estimation Model with Refined Effort Data

The results of cost estimation using techniques validated in this thesis demonstrate a

help desk cost model is feasible, in spite of several assumptions made regarding the cost

data. Specifically, costs attributed to the subset of products chosen for the extended pilot

study (pilot 4) and the large scale approach were estimated through linear regression. The

accuracy with which costs were predicted under these assumptions motivates a refinement

in the approach to actual help desk cost measurement and data collection. Should effort data

be collected by product, fewer assumptions would need to be made regarding allocation of

overall help desk labor to the set of products selected for investigation. A replication of

the case study described in the large scale approach, using refined cost data, would likely

produce a more accurate cost model.

5.4 Generalization to Other Domains

The techniques presented in this thesis were validated in an organization which pre-

dominately uses Windows products. Additionally, the organization is a large company with

a wide variety of product types. IT services are internal to the company versus outsourced.

The organization deals mainly with defense contracts. Although the large amount of help
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desk data facilitated validation of techniques in this research, organizations which produce

fewer help desk incidents, possibly generated from products running on non-Windows de-

vices such as Linux, could also benefit from a cost prediction model. A replication of

the cases study presented in the large scale approach could be of interest to demonstrate

scalability and any differences in prediction accuracy in other domains.

5.5 Prediction of Incident Severity

The organization in this research characterizes help desk incident severity through a

combination of the Urgency, Impact and Priority attributes shown in Table A.1. An increase

in any one of these three attributes indicates an increase in the effort necessary to resolve

the incident, and thus an increase in cost. The ability to predict incident severity based on

incident attributes, and possibly on historical high severity incidents with similar attributes,

would supplement the cost model developed in this thesis.
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Appendix A Help Desk Operations

We present an overview of help desk operations and the data used in this case study

to establish motivation and context for our selection of related work. The primary goal of

the help desk is to provide cost effective IT services to an organization. Amongst a wide

variety of services ranging from infrastructure planning to the provisioning of IT assets,

the help desk resolves problems that occur when using products in the desktop software

portfolio. Each help desk request is recorded on an incident record. Help desk labor is

managed through resource planning, tracking planned labor costs to actual costs, and ad-

justing staffing levels to balance service delivery commitments with labor budget targets.

The basis of estimate for staffing levels is driven primarily by service delivery metrics rather

than through help desk workload predictions. Help desk managers are expected to find ways

to improve problem resolution efficiency to reduce costs.

There are three categories of incidents, as shown in Figure A.1. The first category

consists of incidents submitted to report software product specific issues. For example, an

employee contacts the help desk to report an error message produced by Adobe Reader.

Help desk technician labor is spent resolving this category of incidents through a body

of knowledge comprised of technician experience and scripted solutions. A second ma-

jor category of incidents relates to defective hardware such as broken keyboards, crashed

hard drives and problems that are not specific to any particular installed software prod-

uct. This category also includes incidents associated with general operating system errors

and computer performance problems. These types of issues are usually not resolved by

addressing the functionality of any product other than the operating system itself or an un-
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Figure A.1: Help desk incident resolution labor categories

derlying component such as the .Net framework. A third major category of incidents is

designed to address issues for well-defined situations, through dedicated resolution mecha-

nisms. Incidents in this category are typically routed to dedicated help desk team members

through interactive voice prompts that ensure a trained help desk technician is assigned to

the incident. Dedicated effort can be directed to products with high call volume through

standard scripts or known resolution methods to achieve resolution efficiency. Business

trends influence which products need dedicated support. For example, software products

designed to assist employees in the selection of health benefits during a fixed time period

of benefit selection may require an interactive telephone prompt system to offer a selection

only for health benefit software problems. The quantity of incidents resolved through dedi-

cated, call routed mechanisms is usually high compared to product-specific incidents. This

is attributed to problems which have the potential to affect large numbers of employees.

Software upgrades to highly distributed products such as email and time card software also

influence the level of dedicated help desk effort.

Help desk labor is reported by technicians on a daily basis. Weekly and monthly reports

are created. The weekly reports are generally reserved for internal help desk management

reviews and are not distributed outside of the labor accounting department. Monthly roll

ups are made available to permitted employees.

Incidents are submitted to the help desk by employees who experience problems with

products and need help fixing problems or repairing product installations. Each incident
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record includes a unique identifier and 43 fields for incident attributes. Textual attributes

are used to record problem descriptions, reported source (phone, web, chat), the geographic

location and business unit of the employee who submitted the incident, product categories,

a summary of the resolution, resolution categories, and the name of the organization in

which the product is managed. Five attributes are included to record the date and time

for incident submission, assignment, last updated time, and resolution events. Date time

stamps on incident records for help desk events are recorded with precision to the minute.

Table A.1 describes seventeen incident attributes that quantify the behavior of the incidents

in terms of resolution urgency, relative priority, transfer and escalation activity and process-

ing time. Table A.1 lists all seventeen attributes with their unique identifier, description,

numerical range of values and their role as an input or output during incident processing.

All seventeen attributes are mandatory fields in the help desk database. Attributes A1 and

A2 are categorical attributes whose range of values consists of four discrete levels for inci-

dent urgency, impact and priority. Urgency is assigned by the help desk technician based

on standard guidance which describes the amount of time by which resolution is expected

based on general problem types. Impact is assigned through discussion with the employee

who reports the problem based on the number of employees or devices affected by the

unresolved issue. Incident priority is automatically determined through a mapping of the

combination of Urgency and Impact to one of fourteen levels as indicated for attribute A3.

The lowest priority incidents are assigned a value of zero. Attributes A4 and A5 are binary

categorical levels assigned by the incident management system. A4 is assigned a value of

1 if the incident is resolved on the call or chat session initiated to report the problem. A4

is a service metric used as an indicator of the level of service provided by the help desk

technician. In general, the help desk service model is designed around a maximization of

the level of service and a minimization of cost and effort. A small number of incidents are

excluded from First Call Resolution service metrics. A5 is used for this indicator. These are

incidents for which specific business rules apply such as trouble alerts automatically gen-
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erated through application health monitoring mechanisms. A set of six attributes describe

the extent to which new incidents are similar to existing incidents, documented solutions,

known problems and those related to specific artifacts. These are attributes A6 through

A11. Attribute A6 is set to true if an incident matches any type of incident record in the

system. Values for A7 through A11 are the number of existing help desk records with

matching resolution methods. An increase in resolution efficiency achieved with effort and

cost reduction is targeted through quick reference to other help desk records which assist in

problem resolution, although no quantitative studies have been conducted to substantiate the

benefits of incident matching. Metrics derived from attributes A6 through A11 may also be

used to identify problems which are potentially resolvable through cost-saving self-service

methods.

Attributes A12 and A13 measure impacts to the cost of resolving incidents. Some inci-

dents are not resolvable by the technician providing assistance during the initial engagement

with the help desk. These incidents must be transferred to subject matter experts. While

first call resolution is a cost-based goal, resolution quality is often achieved through reas-

signment of responsibility to more knowledgeable individuals, at the expense of increas-

ing resolution effort. The number of times an incident is transferred for reassignment is

recorded in attribute A12. Managerial assistance is sometimes required to ensure incidents

are resolved. This may become necessary for three reasons. 1) Incident volume may exceed

the capacity of available technicians, 2) experience and knowledge of the technician may

impact the speed and quality with which incidents are resolved, and 3) high priority inci-

dents sometimes need managerial focus to restore productivity to the affected individuals

or systems, especially with wide-scope service outages. Similarly, the priority of some in-

cidents may demand the coordinated efforts of managers to bring in subject matter experts.

Attribute A13 indicates whether or not an incident was escalated in that way for resolution.

A14 and A15 are indicators of cost and effort associated with incident resolution. A16 is

a per-incident measure of service restoration within time spans defined by incident prior-
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ity. Not all incidents must meet a time span, as deemed by the help desk managers. A17

identifies whether they do or not.

Table A.1: Incident Attributes

Attr
ID

Description Range Role

A1 Urgency 1=low, 2=med,
3=high, 4=crit

input
A2 Impact

A3 Priority
(0, 3, 5, 9, 10, 13,
15, 18, 19, 20, 23,
24, 25, 29 )

input

A4 Resolved through First Call Resolution (FCR)
0 = False,
1 = True

output

A5
Resolvable through First Call Resolution
(FCR)

0 = False,
1 = True

input

A6 Incident Matches a help desk historical record
A7 Number of Matches to any other incident

(0, 1, 2, ... , n) input
A8 Number of Matches to any known solution
A9 Number of Matches to any known error
A10 Number of Matches to any known problem
A11 Number of Matches to any configuration item
A12 Total Transfers of Incident (0, 1, 2, ... , n) output

A13 Incident Escalated
0 = False,
1 = True

output

A14 Incident Response Time
(0, 1, 2, ... , n) output

A15 Incident Resolution Time

A16 Return to Productivity (RTP) Compliance
0 = False,
1 = True

output

A17 Return to Productivity (RTP) Eligibility
0 = False,
1 = True

input

The content, accuracy and context of the incidents are monitored for quality through

involvement by help desk managers. Employees impacted by loss of productivity usually

contribute to incident accuracy in the database through feedback to the help desk during the

resolution process.
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Appendix B Case Study Data

This case study describes a large scale IT operation in a large, multinational company.

The IT operation services 800 products installed on over 120,000 desktop machines.

Twenty percent of the products in use by the organization in this case study are widely

distributed to the majority of employee computers. These are mainly office productivity

applications (email and word processing), Internet browsers, domain-specific business tools

and security-related applications. We based our initial selection on the following product

characteristics.

1. Each product is installed on a Windows operating system.

2. There are 50 or more installations of the product.

3. There are at least 50 incidents per product.

4. Product incident records were generated between 4/1/2008 and 10/31/2013.

Searching the organization’s software distribution system resulted in 361 products which

were installed on at least 50 computers. Incident counts for each of the initial set of 361

products were obtained from the help desk database. Incidents marked as unresolved or

canceled were not included in our analysis. We removed 205 products for which the 50

incident minimum criterion was not met. The resulting 156 products were used for analysis

in the remainder of the case study. We label the set of products A as in Equation B.0.1.

A = {A1, A2, A3, ..., An} (B.0.1)
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(a) Product installations and incident quantities

 

(b) Number of product installations

 

(c) Product incident quantities

Figure B.1: Product installations and incident quantities: 156 Products

Figure B.1a shows these 156 products in a scatter plot based on number of installa-

tions and number of incidents. Most products are clustered in the range of less than 20000

installations and less than 500 incidents. Figure B.1b shows a box plot of the number of in-

stallations of the products. Half of the products are installed on fewer than 3544 computers.

The interquartile range shows that 50% of the products are installed on between 815 and

17,990 computers. The average number of installations is 17,470. There are approximately

20 outlier products with installations on 4000 to 120,000 computers. Figure B.1c shows a
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Table B.1: Installation and incident data for products selected in case study

Prod num num Prod num num Prod num num
ID installs inc ID installs inc ID installs inc
A5 193 232 A190 756 1367 A382 201 269
A6 1806 122 A200 1874 81 A383 32208 346

A13 15286 184 A204 3238 153 A384 13502 1138
A14 2692 3105 A211 44758 1054 A385 104296 1045
A20 1058 55 A219 4704 111 A387 19278 151
A21 57133 215 A222 2625 153 A391 93 52
A25 12452 75 A228 7570 65 A393 36197 107
A27 37615 115 A229 4483 94 A394 102 79
A28 40267 483 A232 94514 198 A396 9085 1729
A39 6492 1063 A235 238 140 A397 3312 475
A42 38652 3470 A236 17169 705 A403 17557 174
A44 32214 345 A239 578 59 A404 41940 954
A56 6893 305 A244 25440 207 A408 2204 69
A64 249 89 A245 107 67 A409 1691 207
A65 17271 872 A246 1483 52 A413 49067 65
A74 20700 87 A248 442 218 A416 490 322
A75 890 113 A249 121259 199 A421 15398 326
A77 18895 216 A255 5547 351 A427 862 87
A81 4587 213 A260 21434 861 A436 3072 66
A82 176 76 A267 799 71 A439 124882 54
A83 699 201 A271 131874 100 A442 418 197
A86 1037 116 A275 3201 1363 A450 5234 134
A89 1449 107 A277 95 1510 A451 1763 67
A90 5257 3701 A278 70 59 A456 3166 138

A101 255 78 A282 905 84 A464 3356 50
A103 3556 1064 A284 10108 340 A465 399 1587
A104 3231 698 A287 17876 935 A467 64073 1386
A114 17885 1877 A290 393 204 A468 1602 51
A115 20638 3188 A293 79696 777 A474 13567 736
A116 402 3179 A294 3531 1088 A476 3208 91
A117 782 1042 A295 889 178 A487 38512 416
A119 1764 542 A300 4134 66 A488 6712 195
A123 8355 823 A310 5721 61 A495 4732 87
A128 87716 1034 A312 118566 268 A497 126289 2755
A144 480 290 A315 614 81 A499 1194 1477
A145 10611 90 A319 32115 588 A500 63555 392
A146 5094 1559 A320 11861 1224 A501 5609 235
A148 18972 831 A327 345 226 A502 113203 123
A151 3704 52 A329 3133 53 A503 1861 600
A152 1392 162 A333 3246 2837 A508 613 298
A155 522 203 A334 29993 2484 A510 10786 94
A162 82 125 A345 2115 1227 A511 452 481
A165 6394 70 A347 1428 131 A514 4863 60
A166 11016 656 A357 500 85 A516 213 70
A171 10646 161 A359 2074 1778 A517 513 1144
A172 428 175 A361 240 174 A519 1357 269
A177 32022 64 A367 119384 2662 A520 98952 493
A178 21815 3916 A368 763 237 A523 119341 3358
A179 874 395 A372 1754 86 A524 757 413
A182 105885 191 A373 7767 98 A529 760 103
A185 359 120 A375 1304 126 A531 15570 95
A187 12911 1244 A376 4630 990 A532 95 156
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Table B.2: Comparison of selected product descriptive statistics to full help desk product
portfolio

Min. 1st Qu. Median Mean 3rd Qu. Max
Incident volume (all products) 1 3 17 321 408 18840

Incident volume (selected products) 50 94 204 592 812 3916
Number of installations (all products) 1 27 320 7450 2589 131900

Number of installations (selected products) 70 815 3544 17470 17990 131900

box plot of the number of incidents generated by the products. Half of the products produce

fewer than 204 incidents as indicated by the median value. The interquartile range shows

that 50% of the products produced between 94 and 812 incidents, with an average of 592

incidents. Twelve products shown as outliers produced between 2500 and 4000 incidents.

Descriptive statistics are included in Table B.2 for a comparison of the selected products and

the full product portfolio in terms of installations and incidents. The descriptive statistics in

Table B.2 indicate one half of the 800 products are installed on fewer than 320 machines.

Similarly, one half of the products produce 17 or fewer incidents. This skewness in both

product installations and number of incidents generated is evident in Figure B.1a. Of the

roughly 123000 incidents used in this case study, 93000 (76%) were produced by the 156

products selected for investigation. This confirms an instance of the 80/20 Pareto rule.

Figure B.2 shows incident volume from April 2008 to October 2013. The average

monthly incident volume for the software products and hardware/OS categories is roughly

2000 and 1000 respectively, whereas the average volume of incidents for the dedicated ef-

fort category is near 10,000. The help desk incident database separates incidents by product

name and by time interval, but it does not automatically separate incidents into the three cat-

egories. For example, the database can be queried for all incidents reported against Adobe

Reader in the May 2013 time frame. Similarly, incidents against the Windows 7 operating

system and those against peripheral devices (keyboards, mouse, etc.) are easily obtained,

but their separation from named software products is not made. The data used for this case

study fall into two categories defined by Runeson, et. al. [93]. Knowledge of help desk
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Figure B.2: Monthly incident volume distribution by category

operations in the industrial setting of this case study is obtained by direct methods through

semi-structured interviews with two help desk managers. Data obtained by this method

compliments the experienced-based knowledge of help desk data analysis by one of the

authors of this paper. A second category of data, one in which the majority of the quanti-

tative data in this case study falls, is obtained through the inspection of archival data in the

help desk database of incident records. The quantitative data is collected and maintained in

the help desk database for the analysis of performance with respect to established service

metrics and for trend analyses from which business decisions are made.

For each product in our analysis we obtain the following data.

1. Number of incidents submitted within the time interval for our analysis

2. Date and time at which each incident is submitted

3. Values for seventeen incident attributes as shown in Table A.1 for all incidents
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Appendix C The Survey1

This is an anonymous survey for all company systems and software en-
gineers to determine various experiences we have had with different types of
reuse. This information can be used to help analyze and apply best practices
for reuse. It can also be used as data to include in proposals, for research papers
such as doctoral dissertations and masters theses.

For purposes of this survey:

• A strategy is the choice of approach or combination of approaches the
program makes to employ reuse
• An approach is the one of the development methods that allows for reuse

(such as those four listed below):

– Model-based reuse is reuse that is based on reusing models created
on other programs or components.

– Component-based is reuse based on already developed components
or designed for reuse on a component basis.

– Product line reuse is reuse based on a standardized but tailorable
product line.

– Ad Hoc is reuse that the engineer is familiar with, that happens to
meet a requirement but was not designed for reuse.

If you have been involved in more than one project that employed reuse and
had different experiences you would like to share, please respond once per
program. In these cases please respond from the standpoint of that program
and your experiences there. Summary results (and the resulting papers) will
be posted here. We hope the results provide guidance in our future practices
and help identify the best strategies and approaches for different types of pro-
grams We hope this survey can be used as a first step to assess what works and
what does not work in reuse. All surveys used for academic research need to
make the following disclaimer: Participation is voluntary. You can delete your
response at any time. You can respond without identifying yourself.

1This survey is included with reference to contributions by Dr. Julia Varnell-Sarjeant in her PhD thesis on
the subject of software reuse in embedded vs. non-embedded systems [121]. This survey is also used by Dr.
Varnell-Sarjeant et al. [122]. Dr. Varnell-Sarjeant developed the survey and collected the data. This survey is
included to assist in understanding Pilot Study 3.2.
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Respondent Information
RQ-1 The purpose of these questions is
to correlate reuse experience with the type
of engineer (ie hardware, software, sys-
tems), the company (which corresponds to
the types of programs and the culture), and
the experience level of the engineer.

• 1. What type of engineer are you?

– a. Systems
– b. Software
– c. Software Systems
– d. Specify your own answer

• 2. What company and location do you
work for?
• 3. How many years of experience do

you have with system or software de-
velopment?

– a. 0-5 years
– b. 6-10 years
– c. More than 10 years

• 4. How many years of experience do
you have with incorporating reuse into
programs

– a. 0-5 years
– b. 6-10 years
– c. More than 10 years

Program/Application Information
RQ-2, RQ-3 The purpose of these questions
is to correlate the size of the program, the
nature of the system/program, the software
type. This should offer insight into whether
embedded and non-embedded use the same
strategies and whether successful strategies
are similar.

• 5. Is the system you are working
on or reporting on embedded or non-
embedded?

– a. Embedded

– b. Non-embedded

• 6. It is possible for a system to be em-
bedded and the software to be non em-
bedded (for example, database soft-
ware may be part of a flight system
but not itself embedded). Conversely,
it is possible to work on embedded
software for a non-embedded system
(for example, embedded flight soft-
ware components for a desktop simu-
lator). Is the software you are working
with or on or reporting on embedded
or non-embedded?

– a. Embedded
– b. Non-embedded
– c. Both

• 7. What type program are you work-
ing on (i.e. what is the final product)?

– a. Satellite
– b. Ground Station
– c. Missile/Rocket
– d. Helicopter
– e. Submarine
– f. Deep Space (probe or lander)
– g. Logistics
– h. Data Collection
– i. Other (describe)

• 8. How large is the software ef-
fort on your program, or the program
you are reporting on (approximately)
(KSLOC)?

• 9. What type of application is the
focus of the work product you are
producing? i.e. graphics, GNC, al-
gorithm, web-based, business, data
mining, hardware components, archi-
tecture etc?
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Reuse Information
RQ-4, This set of questions helps identify
the type of reuse strategy employed, whether
success is improved with being part of the
decision, and whether the program is far
enough along to measure factors that occur
late in the program. We are able to compare
development strategies and artifacts used on
embedded systems vs. nonembedded sys-
tems.

• 10. Is your program employing prod-
uct reuse? (artifacts, models, etc)

– a. Yes (Branch to 11)
– b. No

• 11. What approach to reuse did your
program take? Check all that apply

– a. Component based
– b. Model based
– c. Product Line
– d. COTS/GOTS
– e. Heritage/legacy
– f. Ad Hoc (using already de-

veloped code that you happen to
have around)

– g. Other

• 12. Did you have input in the reuse
decisions?

• 13. What phase has your program
reached?

– a. Capture
– b. Requirements
– c. Architecture
– d. Design
– e. Implementation
– f. Integration and Test
– g. Deployment
– h. Maintenance/Operations and

Maintenance

• 14. What product(s) is/are being
reused? (i.e. requirements, architec-
ture, models (what type?), use cases,
code, drawings, hardware, test prod-
ucts, already tested clusters)

– a. Requirements
– b. Code
– c. Architecture
– d. Models
– e. Drawings
– f. Hardware
– g. Use Cases
– h. Test Products
– i. Already tested clusters
– j. Other (fill in)

Reuse Effectiveness Information
RQ-4 This set of questions will help corre-
late the effectiveness of the strategy against
the strategy by identifying and scoring the
change in outcomes attributed to reuse.

• 15. Did the reuse save labor hours?

– a. No
– b. Yes, from 10 to 20 per cent
– c. Yes, from 20-30 per cent
– d. Yes, more than 30 per cent
– e. It cost us time (10-20 per cent

)
– f. It cost us time (more than 20

per cent )
– i. * How much of the time sav-

ings to you attribute to reuse?
Please explain how it saved time

– i. * Please explain how the reuse
cost you labor hours

• 16. Did you notice fewer defects than
when reuse was not employed?

– a. No
– b. Yes, 0-10 per cent fewer
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– c. Yes, 10-30 per cent fewer
– d. Yes, more than 30 per cent

fewer
– e. No, we observed more defects

• 17. Did it reduce testing labor hours?

– a. No
– b. Yes, 0-10 per cent reduction
– c. Yes, 10-30 per cent reduction
– d. Yes, more than 30 per cent re-

duction
– e. No, we had to test more than

10 per cent more

• 18. Did it reduce items that needed to
be tested?

– a. No
– b. Yes, 0-10 per cent reduction
– c. Yes, 10-30 per cent reduction
– d. Yes, more than 30 per cent re-

duction
– e. No, we had to test more than

10 per cent more

• 19. Did you feel risk (cost, schedule,
technical) was reduced? yes/no
• 20. * If you felt risk was reduced,

please explain how. If not, please ex-
plain.

Reuse Experience
RQ-5 This set of questions will help ana-
lyze the user the experience of the reuse ap-
proach.

• 21. Could you please comment on
your reuse experience, both bad and
good?

• 22. How important do you consider
software reuse to achieve the follow-
ing benefits? Answer with 5 being
greatest benefit, 1 being nearly use-
less:

– a. * Lower Development Costs

∗ i. 5 Great benefit
∗ ii. 4 Some benefit
∗ iii. 3 Little benefit
∗ iv. 2 Neither helpful nor un-

helpful
∗ v. 1 Nearly useless

– b. * Shorter ”time to market”
(including all phases of develop-
ment through delivery)

∗ i. 5 Great benefit
∗ ii. 4 Some benefit
∗ iii. 3 Little benefit
∗ iv. 2 Neither helpful nor un-

helpful
∗ v. 1 Nearly useless

– c. * More confidence in quality
of delivered product

∗ i. 5 Great benefit
∗ ii. 4 Some benefit
∗ iii. 3 Little benefit
∗ iv. 2 Neither helpful nor un-

helpful
∗ v. 1 Nearly useless

– d. * Known standardized prod-
uct

∗ i. 5 Great benefit
∗ ii. 4 Some benefit
∗ iii. 3 Little benefit
∗ iv. 2 Neither helpful nor un-

helpful
∗ v. 1 Nearly useless
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Appendix D Published Papers

The following co-authored papers related to this thesis have been submitted or published
as noted. Cross references to applicable sections in this thesis are included as footnotes.

1. Anneliese Andrews and Joseph Lucente. From incident reports to improvement rec-
ommendations: Analyzing it help desk data. In Australasian Software Engineering
Conference, April 2014 (published). [10]1

2. Julia Varnell-Sarjeant, Anneliese Amschler Andrews, Joseph Lucente, and Andreas
Stefik. Comparing development approaches and reuse strategies: An empirical eval-
uation of developer views from the aerospace industry. Journal of Information and
Software Technology, 2014 (published). [122]2

3. Joseph Lucente and Anneliese Andrews. Predicting incident reports for IT help desk.
In The First International Workshop on Dependability and Security of System Oper-
ation, June 2014 (published). [8]3

4. Anneliese Andrews and Joseph Lucente. On the Viability of Using SRGMs for IT
Help Desk Incident Predictions. In International Conference on Software Quality,
Reliability and Security, August 2015 (submitted). [11]4

5. Anneliese Andrews, Philip Beaver and Joseph Lucente. Towards Better Help Desk
Planning: Predicting Incidents and Required Effort. In Empirical Software Engineer-
ing (submitted). [9]5

1Pilot study 3.1 Application of Principal Components Analysis
2Pilot study 3.2 Extension of PCA to Survey Data
3Pilot study 3.3 Software Reliability Growth Models
4Pilot study 3.4 PCA and SRGMs with Extended Product Set
5Chapter 4 Large Scale Approach
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